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Introduction 
 
This booklet presents the theoretical basis for the MERIA project, and is especially 
intended to support the design of scenarios and modules in the project, as well as 
the analysis and evaluation of their effects. 
 
MERIA aims to further the use of relevant, interesting and applicable 
mathematical activities in secondary school classrooms. The main hypothesis of 
the project is that such activities engage students in more serious mathematical 
work than solving exercises with predefined methods. In fact, the “exercise 
paradigm” in many everyday practices of teaching mathematics (including upper 
secondary and even university courses) may be a main factor that shapes the 
common students’ impression of mathematics as uninteresting (tedious routine 
work), irrelevant (at least to them) and useless (except to pass an exam). The 
alternative proposed and pursued in this project can be roughly characterized as 
inquiry based mathematics teaching, where exercises are replaced by “inquiry 
activities” of various types. Designing such activities, testing them in practice and 
disseminating them to teachers, are thus our main tasks. 
 
The project aims to be based on serious and visionary research on how to realize 
the aforementioned tasks. This is the reason why in this volume we have gathered 
a presentation of important approaches and ideas from the research literature. 
The volume is structured in four chapters: 

 Chapter 1 presents the general idea of “inquiry” in mathematics education, 
both from a historical point of view, and in terms of how it may be defined 
at present (in general and relatively broad terms). 

 Chapter 2 provides general strategies for implementing inquiry as a 
students’ activity in classrooms. 

 Chapter 3 and 4 present two more precise - and well established - research 
programmes for the design of inquiry based mathematics teaching: 

o The Theory of Didactical Situation in mathematics, which strives to 
put students in “research like situations” (akin to mathematicians): 
consisting of action, hypothesis formulation, and their 
validation/proof.  

o Realistic Mathematics Education, in which mathematical notions 
are built up from students’ work with problems in contexts that are 
“real” to them, through the “mathematisation” of those contexts. 
 

References to the literature are provided throughout for those who wish to 
pursue a given point at greater depth than it was possible in the present volume. 
The appendix provides an outline of some of the most important references for 
this project. At the end of the handbook, a glossary of the most important special 
terms, employed in the text, is also provided. 
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1. What is Inquiry Based Mathematics Teaching? 
 
Inquiry can loosely be defined as “investigating a problem”. Here, the word 
“investigate” implies that the efforts to solve the problem are relatively 
autonomous: not directed by others and not following a prescribed routine 
method. Inquiry Based Mathematics Teaching (IBMT) is then a teaching approach 
that allows students to be engaged in an activity which leads them to adapt their 
existing, or construct new, mathematical knowledge. Such a teaching is supposed 
to foster students’ understanding of the meaning and foundations of secondary 
mathematics. It is particularly fruitful when it comes from students’ own activity 
and effort. 
 
In this chapter, the emergence and detailed meanings of IBMT will be presented. 
In fact, mathematics education research has produced different and well 
established conceptualisations of the above, rough idea – that is, methods for 
teaching mathematics in a way that students question, explore, hypothesize and 
reason about mathematical ideas. Nonetheless, the general term IBMT is of quite 
recent origin. 
 
To distinguish between IBMT and other ways of teaching mathematics we 
especially need to clarify what is meant by “a problem”, in what way it is different 
from a task or an exercise, and why solving a problem is not the same as solving 
an exercise. Finally, we will discuss the role of students’ questioning the problem 
and related content knowledge. Research indicates that it is crucial that students 
tackle the problem or situation by themselves, since this can drive them to 
formulate hypotheses, explore and experiment with their knowledge, as well as 
to formulate solutions based on their actions. 
 
Before we turn to describe these components of IBMT we will give a short account 
of how and why IBMT has recently appeared as an overarching approach to the 
development of mathematics teaching. Certainly, MERIA is not the first European 
initiative to promote IBMT. During the last decade or so, the European Union has 
financed several large-scale projects with the aim of developing, implementing 
and assessing “inquiry-based science teaching” at different levels of the 
educational systems (Artigue & Baptist, 2012; Mass & Artigue, 2013; Ropohl, 
Rönnebeck, Bernholt, & Köller, 2016). Most of these projects pursued also 
mathematics together with science. In fact, the notion of “inquiry based teaching” 
is more natural and prominent in science education than in mathematics 
education. In mathematics education, more or less similar ideas and approaches 
have been developed under the labels of problem solving, mathematical 
experimentation or mathematical modelling, etc. However, in science education, 
as well as in mathematics education, there exist different approaches how to 
develop this kind of teaching. This handbook covers two such approaches in 
mathematics education in more details (Chapter 3 and 4). According to the 
Fibonacci project, inquiry in science education often draws on sense experience 
(Artigue & et al., 2012, p. 9). There are many science notions related to sense 
experiences, like speed, time, light, force, pH value, changing seasons, etc. Those 
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experiences can be further studied in cyclic processes, e.g. the so-called 5E model. 
The 5E model refers to phases of inquiry based science teaching where students 
are supposed to engage in, to explore, to explain, to elaborate and to evaluate the 
knowledge or ideas to be developed during an inquiry process (Bass, Contant & 
Carin, 2009, p 91). In the 5E model, the sense experience of force or time, 
ecosystems, or chemical reactions from everyday life, can serve as an outset or 
starting point which engages students in more systematic inquiry into a 
phenomena or causal relations. These inquiry processes might lead students to 
construct knowledge of laws in natural sciences.  
 
By contrast, one can argue that mathematical knowledge is often built from a 
more theoretical basis. Certainly, inductive reasoning based on “experiments” can 
be set up in many cases, such as for number patterns or specific examples of a 
more general principle. But as argued by Artigue and Baptist (2012), the 
cumulative nature of mathematics represents a challenge with respect to 
adopting the notion of inquiry directly from natural sciences (Artigue & Baptist, 
2012). In science, a hypothesis (by a researcher or a student) is validated by 
experiments, while in mathematics, the ultimate validation requires a proof based 
on deductive reasoning.  
 
This booklet will provide you with two different approaches to Inquiry Based 
Mathematics Teaching (IBMT). One of them presents examples of how students’ 
experiences can serve as an outset of an inquiry process.  It is called Realistic 
Mathematics Education (RME) and was initially developed by Hans Freudenthal 
(Freudenthal, 1991). The other approach is the Theory of Didactical Situations 
(TDS) initially developed by Guy Brousseau (Brousseau, 1997). TDS is based on 
the idea that students construct new knowledge when they solve a problem while 
adapting to what is called a didactical milieu. We will go into further details with 
RME and TDS in Chapter 3 and 4. In this chapter, we will present core notions of 
IBMT, to elucidate its origins, justifications (why it is important to pursue) and 
constraints (what challenges it may encounter). 

Origins of IBMT 
More than a century ago, the first formulations of the idea that teaching in general 
should be related to students’ experiences and should be focused on students’ 
activities were put into writing. The educational researcher John Dewey is often 
associated with the phrase “learning by doing”. He argued that teaching should 
rather revolve around students’ activity and the ways students can gain 
knowledge from it (Dewey, 1902). Dewey (1938) emphasised the potential 
importance of inquiry and its role in learning and teaching – especially in the field 
of science. To a large extent, he regarded mathematics as a tool or a language to 
order complex data and to carry out systematic treatment of outcomes of inquiry 
processes – for instance the outcomes of students’ actions when experimenting 
with laws of physics or biological systems. Although Dewey did not provide 
explicit proposals on how to create inquiry based mathematics teaching, his ideas 
have been pursued later on by several mathematics educators. 
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What Dewey opposed was a long tradition of knowledge transmission from 
teachers to students, which is as old as the discipline itself. For many 
mathematicians to teach meant to repeat, and to make students recite a given text 
or imitate the teacher’s action while solving mathematical problems. This also 
goes for the more practical and elementary sides of mathematics, related to 
calculation techniques. Even today, much mathematics teaching is based on 
repeating demonstrated techniques, and training them to perfection through 
endless sequences of similar calculations. In many schools, a common “template” 
for mathematics teaching consists in teacher’s presenting of some technique (e.g. 
a formula, a rule, a method, etc.), after which he provides his students with a few 
“typical” examples on how to employ the new piece of knowledge in solving 
mathematical tasks of a certain type, and finally he provides the students with 
very similar tasks so they can practice what the teacher did (Schoenfeld, 1988). 
An example could be when students are presented with the definition of the 
second degree polynomials and how to find its roots from the equation  

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0.  
 

Students are then provided with the formula  

𝑥1,2 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
. 

 
Next, the teacher shows the students how to find the roots of a polynomial e.g. 
2𝑥2 + 2𝑥 − 12  by using the provided formula. More examples might be given 
before the students are asked to solve a series of similar exercises. In this way 
students imitate the teacher’s activity, while they may ignore the meaning of 
finding the roots, as well as the justifications of the method. Asking students to 
solve equations where the polynomial has one or no real roots could, on the other 
hand, create potentials for students’ inquiry of the meaning of polynomial roots 
and equation’s solutions.  
 
Routine exercises simply require students to imitate a teacher, which they may 
often do without seeing or constructing any rationale or meaning of tasks and 
techniques used to solve them (Schoenfeld, 1988). In fact, students may well - 
over time - get to consider mathematics as rather meaningless set of techniques 
which have to be acquired by imitative training. This kind of teaching fails to give 
students experiences of many important sides of mathematics, such as: solving 
complex problems, building up coherent structures of knowledge, conjecturing 
and proving, experimenting with special cases, etc.  
 
One can argue that to transmit knowledge and to teach students how to solve 
standardised tasks has proved to be sufficient for many former students in high 
schools throughout the last century. However, today larger and more diverse 
groups of students enter upper secondary education in many countries. To teach 
them requires more elaborate approaches underpinned by research in 
mathematics education.  The research field of mathematics education has 
emerged through centuries, beginning with teachers who have shared reflections 
on their teaching and developed teaching techniques based on their own 



 

7 
 

experiences (Kilpatrick, 2014). Today, students need to learn mathematics at 
deeper levels of understandingthan in the past in order to meet demands of 
society. In former times, it was common that people left school before upper 
secondary education to enter the work market. This required merely practical 
mathematical skills such as techniques to calculate and repeat established 
procedures. Today many professions and higher education require that students 
graduate from high school with knowledge and competences regarding basic 
calculus, statistics, the notion of function etc. This growing number of students at 
upper secondary level, some with very little motivation for learning mathematics, 
represents a specific challenge for mathematics teaching. These students may 
simply not be able to receive transmitted knowledge as easily as earlier 
generations, which is a reason why more inquiry based approaches are needed. 
To understand the ways how students develop mathematical knowledge is an 
ongoing research interest in mathematics education. Mathematics educator 
Mogens Niss formulates the rationale of this interest as:  

If we understood the possible paths of learning mathematics, and the obstacles that 
may block these paths, for ordinary students, we would gain a better understanding 
of what mathematical knowledge, insight, and ability are (and not are), of how they 
are generated, stored, and activated, and hence of how they may be promoted 
(Niss, 1999, p. 4).  

 
Throughout the 20th century, different approaches to this interest have been 
developed, but a persisting one is to let teaching be inspired by the ways in which 
professional mathematicians think, learn and develop mathematics. 
 
Early in the 20th century mathematicians Fehr, Laisant, Hadamard and other 
collected systematic accounts of how they and their colleagues develop new 
mathematical knowledge - in order to characterize the research activity and to let 
researchers serve as inspiration for students’ engagement in learning 
mathematics (Kilpatrick, 2014). This idea was also seen in the first reform 
movements with respect to high school curriculum, during which the German 
mathematician Felix Klein (beginning of the 20th century) introduced a reform 
programme for teacher education promoting practical instructions, development 
of spatial intuition and a functional approach to mathematics (Kilpatrick, 2008). 
Klein played a key role in the early development of the research area of 
mathematics education, and especially for the relation between research in 
mathematics, the teaching of mathematics, and research in mathematics 
education. In various and often indirect ways, his ideas continue to influence 
mathematics teaching at the secondary level. Next wave of reforms, which can be 
related to the idea of IBMT, is the introduction of problem solving in mathematics 
education in the 1980s.  We consider it in the next section as an underlying idea 
of inquiry in mathematics.   

Characteristics of inquiry processes 
In this section we present an overview of ideas and concepts which govern IBMT 
developments throughout the last century. A core notion is that of a problem.  
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An example of a problem could be the following:  

“Consider an arbitrary triangle with side lengths a, b and c. If the sides are 
all equally enlarged, how much bigger is the area of the enlarged triangle 
compared to the initial one?”  

 
Depending on the context in which the problem is posed, it provides students with 
different opportunities for engagement in actions of characterizing a problem and 
finding its solution. There exist different solution strategies to this problem 
depending on students’ prior knowledge on triangles, measures of sides, angles 
and areas, similar triangles and trigonometric ratios. Students can tackle the idea 
of enlargement and experiment with additive and multiplicative enlargement. 
They can actually create a large number of triangles, enlarge them, collect results 
and formulate hypotheses regarding the enlargement of the area. Further, 
students can look at special cases (such as right angled triangles) and 
algebraically deduce a hypothesis regarding how much bigger the enlarged area 
will be. Different solution strategies can further be compared, discussed and even 
validated or tested on new triangles. In the context of IBMT, it is an asset that 
students can pursue different and personal ideas, compare, connect and evaluate 
those in order to construct more robust knowledge. This means that students 
know more than to calculate the area of a triangle. They know how to combine 
new knowledge with other relevant domains in order to solve open problems. The 
knowledge constructed with this problem relates to symmetries and mappings 
between geometrical shapes.  
 
In mathematics, the actions and experiences, which Dewey suggests learning 
should arise from, will most often be motivated by attempts to solve some 
problem. The exposed triangle enlargement problem is an example.  Problems can 
vary in nature, in their origin, level of difficulty, number of possible strategies or 
solutions, etc.; they may also have different potential for generating mathematical 
curiosity or creativity among students. This is important as a catalyst for students’ 
questioning and experimenting with the content knowledge. 
  
Other examples from school practice can cover dynamic uses of computer 
programs or modelling situations outside of mathematics. While working in a 
Computer Algebra System or a Dynamic Geometry Software with a graphical 
environment, a student might draw a graph of a linear function given by 

( ) .f x ax b  Here a student has an opportunity to move or tilt the graph up or 

down. The student might investigate what happens with the graph while changing 
the coefficients. This problem could be driven by curiosity and assist students to 

In IBMT a problem is more than a certain task, exercise or an activity. A problem 
is open in the sense that it requires students to engage in experimenting, 
hypothesizing about possible solutions, communicating hypotheses and 
possible solution strategies, and maybe pose further questions to be studied as 
a part of a process of its solving. 
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develop knowledge about the graphical interpretation of the coefficients 𝑎 and 𝑏. 
ICT technology and different software in general play an important role in the 
development and support of IBMT (e.g. see Artigue & Baptiste, 2012, p. 10).  
 
Students can encounter many other questions where the need for knowledge is 
elicited, such as “Can all natural numbers be written as a product of prime 
numbers? Can they be written as a sum of primes?” or “How can I describe the 
acceleration of my bicycle on my way to school when I have measurements of the 
speed at certain moments of time?” These questions or problems require from 
students to develop new knowledge. The problems can rise from purely 
mathematical issues, as well as they can be initiated by experiences or actions in 
real world. Problems, problem formulation and problem solving are the core 
components of the inquiry process in mathematics teaching and play a significant 
role in the mathematics education literature. We will now give a brief overview of 
how these notions have been addressed throughout the last century in the context 
of mathematics teaching.  

Problem solving as a way to learn 
Just as important element in origin of IBMT as problem posing is the problem 
solving activity. Although problem solving has become the core element in 
mathematics curricula of many countries from 1980s, it was not a new notion in 
the literature at that time. In 1945 George Pólya published his book “How to solve 
it?”, which is considered a classical reference in problem solving approaches to 
mathematics education (Artigue & Blomhøj, 2013, p. 802). The book describes the 
problem solving as an activity in which mathematicians engage when doing 
research. Emphasis was put on the role of problems and heuristic competences 
needed to solve these problems. Heuristic competences draw on content 
knowledge and strategies needed to address non-routine problems. The triangle 
problem is such a problem, a non-routine problem for school context. It can be 
solved by employing content knowledge such as the area of an arbitrary triangle, 
but Sit also requires that students develop knowledge about similar triangles 
while combining known strategies and pieces of knowledge in new ways. In his 
work, Pólya suggests that students use the strategies such as to find a counter 
example, to sketch a situation e.g. with a graph, to consider special cases, to guess 
and check, to prove by contradiction etc.  In the triangle problem a good starting 
strategy can be to consider special cases, such as concrete triangles or right angled 
triangles. Knowledge used can be a definition, a rule, a method etc.  These are all 
familiar components of mathematical activity at university level. However, 
Pólya’s work does not systematically address how to realise these activities at all 
levels of the educational system when teaching mathematics. 
  
Schoenfeld is one of the researchers who were engaged in pursuing realization of 
Pólya's ideas in mathematics teaching systematically. He criticized the 1980s uses 
of Pólya's work as being trivialized (1992, p. 352), in particular, not sufficiently 
emphasising the crucial element of students’ development of heuristic 
competences.  Schoenfeld argues that before getting students to engage in 
problem solving activities one needs to distinguish between problems and 
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exercises. Exercises can be solved by known solution strategies, whereas problem 
solving activities require developing or combining methods and knowledge in 
new ways. Schoenfeld identifies important elements in this process which require 
that students can draw on resources. Resources are mathematical knowledge 
possessed by the individual that can be brought to bear on the problem at hand; 
intuitions and informal knowledge regarding the domain, facts, algorithmic 
procedures, "routine" non-algorithmic procedures, understandings 
(propositional knowledge) about the agreed-upon rules for working in the 
domain. Hence, this is what students need to learn to draw upon during problem 
solving processes: their previous acquired knowledge, competences and skills 
and to combine them with intuition and preliminary hypothesis of an answer. To 
realise this, students draw on their heuristics, which include “strategies and 
techniques for making progress on unfamiliar or nonstandard problems; rules of 
thumb for effective problem solving, including: drawing figures, introducing 
suitable notation, exploring related problems, reformulating problems; working 
backwards, testing and verification procedures" (Schoenfeld, 1985, p. 15).  These 
heuristics have similarities with Dewey’s description of the role of mathematics 
in inquiry processes, but they also go beyond that. According to Artigue and 
Blomhøj (2013), they share many characteristics with approaches of inquiry 
based science teaching, such as questioning, hypothesizing, experimenting 
systematically, collaborating, communicating, representing the problem in 
different ways etc., all with purpose of students’ developing new knowledge. It is 
also important to notice that the heuristic competences include an explorative 
and curiosity driven attitude towards mathematical activity.  
 
This all could be reflected in the triangle enlargement problem with its possible 
solution strategies. The problem can be solved by experimenting with concrete 
materials (creating the triangles), considering different reformulations of the 
problem (enlarging with additive or multiplicative strategies) or the problem can 
be addressed from an abstract point of view by e.g. addressing a special case, for 
instance, a triangle with a right angle. 

 
However, it is still somewhat unclear how to teach students in this way, when and 
why to apply each element. Teachers must develop problems where students 
need to act as mathematical inquirers but teachers themselves are supposed to 
refrain from telling the students what to do. However, concerns in teaching are 
not only to provide students with the opportunity to gain experience with 
problems that are of more open character than ordinary exercises, as exemplified 

In IBMT problem solving is the activity in which students are expected to 
engage. It includes the students’ use of previously developed knowledge, 
intuition, vague ideas, and hypotheses to explore and understand the problem. 
Through experimentation and new ways of combining their knowledge, 
including knowledge developed during the exploration, students construct 
new knowledge, which is to be evaluated through further experimentations. 
Students’ mathematical creativity and curiosity drives the problem solving 
process, and are also further developed by engaging in problem solving.  
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with the triangle problem, but also to go successfully through the whole described 
process of solving a problem.  

The amount of guidance in problem based teaching 
Already in 1938 Dewey advocated that students’ learning processes should be 
anchored in students’ interactions with a problem. Preferably this interaction 
happens in a dialectics between familiar and unknown situations, where the 
already acquired knowledge of the students should guide the study of the 
unknown. For example, based on what students already know, they can formulate 
hypothesis and approach the problem in a systematic way during the inquiry 
process. In the triangle problem the students can systematically explore the 
relation between the enlargement of the triangle and the enlargement of areas. 
Students can formulate precise hypotheses regarding this relation from the 
special case of the right angled triangle. The hypothesis can be evaluated by 
creating arbitrary triangles and calculating the areas of the initial and the 
enlarged triangle. Based on experiences from the actions, students construct their 
own knowledge regarding the studied problem. In the triangle problem, students 
have potential to construct knowledge regarding similar triangles, a general 

formula for the area 𝐴 =
1

2
𝑎𝑏sin𝐶, where 𝐶 is the angle between the two sides a 

and b, and understanding of the trigonometric ratios. Therefore, to design inquiry 
based teaching, a teacher must create scenarios which help them to understand 
in which phase students draw on already acquired knowledge in the study of a 
problem, where a hypothesis is created and where it is tested, where new 
knowledge can be constructed or formulated based on the (generalisations) of the 
students’ actions. In this sense the teacher serves as a facilitator in creating and 
guiding the students in their knowledge construction (Godino et al., 2015).  
Teachers’ role should be as the experienced co-researcher guiding the younger 
members of the research community rather than play the role of the person with 
all the answers (Artigue & Baptist, 2012). 

 
Today it is generally agreed upon that real problem solving ads to the learning 
outcomes of mathematics teaching: "one gains more from solving a problem than 
getting to know the answer obtained" (Bosch & Winsløw, 2016). This "more" 
relates to the heuristics and uses of resources mentioned above. It could appear 
elusive, but is still recognizable when encountered. Previous studies indicate that 
good problem solving teaching is about creating appropriate relations between 
specific students and specific tasks (Schoenfeld, 1992, p. 353). Therefore, during 
the recent decades, research focus was on characterizations of problems which 

To scaffold students’ work with a problem in IBMT relates to the problem 
formulation. The formulation should enable students to develop a multitude of 
strategies, depending on what knowledge they have already learned. It should 
further promote students’ exploration and experimentation with the problem, 
leading them to construct new knowledge. In this process, the teacher should 
guide the students - not by providing them with answers, but as an experienced 
co-researcher who poses questions and thus drives the inquiry process. 
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are suitable – they should contain rich potential for students’ employing 
heuristics and resources. Furthermore, focus was also on exploration of 
instruction and guidance principles that are supposed to be efficient in making 
students realise their full potentials. In the 1980s, suggestions with respect to 
instructions varied from guided student practice to practice that requires 
students to articulate the processes as a kind of meta-reflection on their own 
practice. Such meta-reflections could be that the students need to translate the 
problem into mathematics, for example in the problem with modelling the 
students’ acceleration during the bike ride to school. Furthermore, meta-
reflection is needed in the problem which considers the graph of a linear function 
in the coordinate system and requires students to collect concrete data from a 
series of examples in order to formulate hypotheses regarding coefficients. 
Instruction principles also deal with challenges and concerns of teachers when to 
interfere with students' activities or refrain from providing the students with 
answers, or how to elicit the optimal strategies (Schoenfeld, 1992, p. 354). If the 
teacher suggests that students should consider a special case, plot data points in 
order to carry out linear regression or to sketch the problem as a graph or a 
geometric shape, some students will interpret this as the only possible way how 
to solve the problem. Not because they are convinced that the strategy solves the 
problem, but rather because the teacher says so. Therefore, it is difficult to guide 
or scaffold students’ work without indicating an answer. In the triangle problem, 
it is a non-trivial task for a teacher to guide students if they insist only on working 
with concrete examples. A question such as if their hypothesis holds in general 
might lead to new approaches to the problem, but it might also be too 
overwhelming and in reality not serve as guidance. This is the general challenge 
of scaffolding inquiry processes in a teaching context. Students need to be 
provided with a restricted field in which to pursue their inquiry, but if the 
guidance is too directed, or the restrictions too many, the potential of the teaching 
design is ruined. Then the students cannot construct knowledge based on their 
actions and experiences. Therefore, a teacher cannot tell the students explicitly 
what to do. At the same time, the teacher must create the needs of students to act 
in a way which might lead them to reach the intended learning goals. Hence 
scaffolding should be thought of as something else than providing examples, 
strategies and posing too direct and closed questions.  

The role of students’ questioning when dealing with problems 
More recent studies suggest problem posing as an approach to engage students 
in problem solving. The pedagogical idea of problem posing may be as old as the 
idea of problem solving. Ellerton (2013) refers to Einstein and Infeld who claimed 
that the formulation of a problem is more essential than providing the answer, 
and that it is a more demanding task (Ellerton, 2013, p. 88). This might be an 

The challenge of scaffolding students’ inquiry processes: with too much 
direction, there is no real inquiry, and the learning potential is ruined; but with 
too little direction, students get stuck and disengage from solving the problem. 
Giving the “right” amount of direction is a delicate act of balance. 
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exaggeration, but it emphasises the importance of questioning the knowledge one 
intends to study further or learn more about. 
 
The emergence of problem posing as an approach to mathematics teaching is 
linked to the renewed interest in problem solving in the 1980s. Ellerton’s study 
of engaging pre-service mathematics teachers in problem posing activities 
suggests that the problem posing might get a dominant role in mathematics 
curricula (Ellerton, 2013, p. 90). Reasons for this claim is that problem posing 
nurtures students’ development of the heuristics and resources involved in 
problem solving and IBMT, or, as it is formulated by Singer, Ellerton & Cai 
"Problem posing improves students' problem-solving skills, attitudes, and 
confidence in mathematics, and contributes to a broader understanding of 
mathematical concepts and the development of mathematical thinking" (Singer, 
Ellerton & Cai, 2013, p. 2). According to Artigue and Blomhøj (2013), but also 
Hiebert et al. (1996), problem posing as a student activity may also support 
Dewey’s idea of reflective inquiry, which implies that students should be allowed 
and even encouraged to problematize the knowledge to be taught. Moreover, this 
means that students should be encouraged to wonder about the implications of 
the problems they are faced with during IBMT. In the triangle example, it is 
reasonable for students to question what is meant by “to enlarge equally” the 
sides of a triangle. However, it is important that the students themselves provide 
an answer, for instance by experimenting with both additive and multiplicative 
strategies. This supports the students’ autonomous construction of knowledge, in 
particular a discovery that the additive strategy does not lead to similar triangles. 
This might further lead students to a question if areas can be compared only in 
the cases where the initial and the enlarged triangle are similar. Further, the 
triangle problem might lead students to question how to find the height of an 
arbitrary triangle by knowing only the side lengths as 𝑎, 𝑏 and 𝑐, etc. 

 
In terms of guidance and scaffolding, a number of design ideas have been 
developed to realize problem posing as an activity in school mathematics. These 
ideas span from delivering information to students and ask them to pose 
problems which can be solved using the received information; ask them to solve 
certain problems and afterwards formulate similar problems, or describe some 
phenomena to students and ask them to pose problems regarding the described 
phenomena (Bosch & Winsløw, 2016). However, these design ideas are still 
somehow off the mark if students’ activity should reflect the activities of research 
mathematicians, where new questions rise from the researchers’ interactions 
with the knowledge domain at stake, for instance through the study of other 
researchers’ work or through personal or collective problem solving activities. 
These activities might lead to a wondering or a curiosity and then to formulation 
of new problems, which drive the research further. According to Kilpatrick this is 

A good problem has an openness which leads students to wonder, delimit and 
pose questions on the content knowledge involved. The questioning is crucial 
as a driver of the inquiry process and should lead students to answer their own 
questions and hypotheses. 
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not a characteristic of research alone. He claims that even more generally, in real 
life, most problems are formulated by a person who solves them and that 
mathematics teaching should be more akin to real life in this respect (Kilpatrick, 
1987, p. 124). The explicit role of problem posing in the different approaches to 
IBMT vary, but it is a shared trait to seek to make students wonder, make them 
curios and investigate assumed relations and formulate hypothesis for further 
inquiry.  

Where do the problems come from? 
Along with the problem posing literature, other theories on mathematics teaching 
have addressed the role of a problem, problem solving and problem posing in 
different ways. Solving non-routine problems is a corner stone in several 
approaches to mathematics education, which was initiated and further developed 
in the 1970s and onwards: The Theory of Didactical Situations (TDS, Brousseau, 
1997) and Realistic Mathematics Education (RME, Freudenthal, 1991). A shared 
idea in TDS and RME is that students should be provided non-routine problems, 
which they solve through the development of new knowledge. In TDS, this is 
supposed to happen through students’ adaptions to what is called the milieu of 
the teaching situation (Brousseau, 1997). In RME the development of knowledge 
happens when students mathematize the phenomena addressed in the problem. 
RME distinguishes between two aspects for this process: vertical and horizontal 
mathematisation (Freudenthal, 1991). Both theories share the idea that a teacher 
provides students with the initial problem, but students are supposed to act and 
formulate ideas related to the problem solving. These activities might lead 
students to implicitly or explicitly question the knowledge at stake. The two 
approaches are the turning points of the activities in MERIA and elaborated 
presentations of the two theories will be given in later sections of this booklet. 
  
However, there are other theoretical approaches which address IBMT as well. 
Mathematical Competence Theory (Niss et al, 2002) can be said to cover heuristic 
competence even if the theory operates with eight competences, none of which is 
called heuristic. Especially, the so-called problem solving competence and 
modelling competence share traits of what has been described above as the 
crucial role of heuristics in inquiry based activities.  
 
One can also argue more generally that mathematical modelling activities support 
the development of the problem solving skills and attitudes. From the perspective 
of Mathematical Competence Theory, mathematical modelling activities can be 
described as cyclic motions forth and back in certain phases of the modelling cycle 
(Blomhøj, 2004; Blum & Leiss, 2006). The modelling cycles can serve as guidance 
for teachers; by being aware of the phases which are parts of modelling activities, 
teachers could follow their realization by students in teaching situations. 
However, studies employing the modelling cycles for analyses of students 
modelling activities indicate that this is not always the case. Modelling problems 
which carry the potentials of realising all phases may still not always realize these 
potentials in teaching contexts (Blum & Borromero Ferri, 2007). Mathematical 
modelling from the perspective of Mathematical Competence Theory and RME 
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approach share the idea that the inquiry processes takes its point of departure in 
“realistic” problems. This also aligns with Dewey’s idea on teaching from the 
beginning of the 20th century. (There are also) Other modelling approaches, such 
as Modelling Eliciting Activities (Doerr & Ärlebäck, 2015), advocate more open 
approaches to the inquiry processes and how they can be supported by students’ 
already acquired knowledge in intra as well as extra-curriculum mathematical 
knowledge domains.  
 
The same can be said about the Anthropological Theory of the Didactics. ATD 
provides a general model of mathematical knowledge seen as a human activity of 
study of types of problems. It is organized by mathematical praxeologies which 
consist of a practical block (types of problems and techniques) and knowledge 
block (technology and theory). It considers a teacher as the director of the 
didactical process. In this approach the inquiry process is initiated by an open 
problem posed by a teacher. The nature of this problem can be purely 
mathematical or from the real life. Students’ explicit formulation of question is 
supposed to drive the inquiry process (Chevallard, 2015). However, teaching and 
learning are not seen as isolated but take place in a complex process of didactical 
transposition. This process also involves some didactical restrictions coming 
from different institutions involved (society, mathematical community, 
educational system, school, classroom) which reduce the autonomy of teachers. 
ATD also proposes ways to transform conditions and constraints of schools and 
disciplines. This ambitious form of IBMT will not, however, be pursued further in 
this handbook. 
In the Japanese tradition (Nohda, 2000), open ended approach with a large 
variety of students’ answers to the same problem is seen as a force which focuses 
the attention of students (and teachers) on mathematical argumentation and 
communication.  Different strategies developed by students can be shared in the 
whole class so that the students construct more coherent knowledge regarding 
the problem.  
 
In different theoretical approaches, we thus find different ideas on how to 
construct and find the problems, which can initiate rich inquiry processes among 
students. In the area of mathematical modelling, the initial problems are often 
provided by teachers and in most cases they address issues from real life 
scenarios. But a common feature of IBMT, which goes back to Dewey, is the idea 
of students learning from interacting with one or more problems.  
 
To summarize the ideas presented so far, we can say that IBMT is described as 
any teaching activity that aims for students to engage in processes of inquiry in 
mathematics - which means that they construct, question and explore concepts 
and notions, by acting or learning to act as an inquirer with a mathematical 
problem, and thus develop a certain mathematical knowledge.  
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What has been done to promote IBMT? 
Researchers in mathematics education seek to promote IBMT through national 
and research projects across countries. In many countries IBMT is at some degree 
included in the mathematics curriculum, although different formulations of its 
characteristics are seen to be used and different theoretical approaches are 
reflected. Projects financed by the European Union support and study the 
implementation of IBMT in the educational systems within member countries. In 
2007, an EU report on trends in pedagogy in the European educational systems 
reported upon "the alarming decline in young people's interest for key science 
studies and mathematics in Europe" (Rocard et al., 2007). In the same report, it 
was proposed that "the reversal of school science-teaching pedagogy from mainly 
deductive to inquiry-based methods provides the means to increase interest in 
science". Similarly, in the USA, the document “Principles and standards for school 
mathematics” emphasises as the goal for secondary mathematics teaching to 
“teach students to solve non-routine problems by offering them the potentials of 
developing knowledge and tools for solving such problems” (NCTM, 2000). This 
indicates national interests worldwide in promoting IBMT in all classrooms. 
However, national accounts regarding the promotion of IBMT still point to many 
challenges for implementation. Reports from France and England argue that 
politicians have many good intentions, but may not be aware of what it actually 
takes to change the classroom practices, how to transform teaching from 
transmission of knowledge to IBMT (Burkhardt & Bell, 2007; Artigue & 
Houdement, 2007). The EU project PRIMAS investigated these challenges and 
recommends that teachers should be provided by opportunities to implement 
inquiry based mathematics teaching. Furthermore, it suggests that all projects 
and course activities taken to promote IBMT should be adjusted to local 
conditions. However, teachers need structures that support them and that 
promote to support each other in the implementation of the new initiatives 
(García, 2013). Similarly, the EU project MASCIL investigated challenges how to 
implement inquiry-based teaching and how to connect mathematics and science 
education to the world of work. It promotes a holistic approach in offering the 
support by “carrying out a variety of activities, including development of high-
quality, innovative materials and running professional development courses” by 
IBL-trained teachers as multipliers. 
 
We now turn to the question of realising IBMT, including the challenges this 
involves. 
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2. How to pursue IBMT? 

Introduction 
Inquiry Based Mathematics Teaching (IBMT) has been promoted in several EU-
projects to better prepare students for a dynamic, knowledge-based society. 
Knowledge of facts and isolated basic skills alone are not sufficient for the 21st 
century. Students need to develop problem solving skills and the ability to acquire 
knowledge by themselves. Consequently, competencies that are becoming 
increasingly important are the ability to deal with missing information, to be 
mathematically creative in new knowledge areas, to collaborate in problem 
solving situations and to communicate (mathematical) results. Mathematics 
education has a responsibility in developing 21st century skills (Rocard et al., 
2007).  
 

Attention for these 21st century skills is not new. Similar competences can be 
recognized in initiatives that intend to measure and promote the mathematical 
literacy of students. Mathematical literacy is defined by PISA as: 

… students’ capacity to formulate, employ and interpret mathematics in a variety 
of contexts. It includes reasoning mathematically and using mathematical 
concepts, procedures, facts and tools to describe, explain and predict phenomena. 
It assists individuals in recognizing the role that mathematics plays in the world 
and to make the well-founded judgements and decisions needed by constructive, 
engaged and reflective citizens. (OECD, 2016a, p. 25) 

 

Also, in the USA, current common core standards address competences that 
transcend procedural fluency (National Governors Association Center for Best 
Practices, Council of Chief State School Officers, 2010).  In these standards explicit 
attention is given to the importance of developing competences like problem 
solving, reasoning, communicating and representing. 
 
These lists of new competences all share the need for more flexible skills. The 
question is how these skills can be developed in mathematics classrooms? A way 
to address these skills is with IBMT. In IBMT processes like hypothesizing, 
planning investigations, experimenting systematically and evaluating results are 
used to create classroom practices. This chapter will address the role of tasks and 
teaching strategies for IBMT. In addition, experiences with IBMT in various 
European countries will be described and discussed. 
 

Tasks that foster IBMT 
Addressing inquiry-based skills can be difficult with traditional textbook tasks. 
These tasks often offer exactly the information needed to solve the task and they 
are mostly structured in such a way that students hardly need to think about the 
solving procedure. For pursuing IBMT it is important to create classroom 
practices in which inquiry-related processes can be addressed. Not necessarily all 
these processes from the circle of inquiry need to have explicit attention with each 
task for the students, but the task should provide opportunities to learn about at 
least one of these inquiry-related processes in mathematics. Unstructured tasks 



 

18 
 

can provide such opportunities for students to inquire, critically reflect, 
collaborate and communicate results; an example is presented in Figure 1. 
 

Structured version 
 
A patient is ill. A doctor prescribes a 
medicine for this patient and advises to take 
a daily dose of 1500 mg. After taking the 
dose an average of 25% of the drug leaves 
the body by secretion during a day. The rest 
of the drug stays in the blood of the patient.  
 How much mg of the drug is in the 

blood of the patient after one day? 
 Finish the table. 

Day Mg of drug in blood 

0 0 

1 1125 

2   

3   
 

 Explain why you can calculate the 
amount of drug for the next day with 
the formula: new_amount = 
(old_amount + 1500) * 0,75 

 After how many days has the patient 
more than 4 g medicine in the blood? 
And after how many days 5 g? 

 What is the maximum of amount of the 
drug that can be reached?  

Unstructured version 
 
A patient is ill. A doctor prescribes 
a medicine for this patient and 
advises to take a daily dose of 
1500 mg. After taking the dose an 
average of 25% of the drug leaves 
the body by secretion during a 
day. The rest of the drug stays in 
the blood of the patient.  
 
Investigation 
• Use calculations to investigate how 

the amount of the drug (in mg) 
changes when someone starts taking 
the drug in a daily dose of 1500 mg 
with for instance three times 500 mg. 

• Are the consequences of skipping a 
day and/or of taking a double dose 
really so dramatic? 

• Can each amount of drug in the blood 
be reached? Explain your answer. 

 
Product 
Design a flyer for patients with 
answers to the above questions. 
Include graphs and/or tables to 
illustrate the progress of the drug 
level over several days. 

 
Figure 1: Two versions of a task (Doorman, Jonker & Wijers, 2016, p. 25) 

 
When using the unstructured version of the task in a mathematics classroom it is 
the teacher’s responsibility to keep students’ focus on the mathematical aspects 
of the problem (or to what extent it is allowed to move from mathematics to e.g. 
biology). This example shows that ‘open’ tasks might connect mathematics with 
other sciences and shows that mathematics is applicable. However, ‘opening up 
problems’ does not necessarily imply situating mathematical concepts in non-
mathematical contexts. Also pure mathematical tasks can be unstructured and 
presented as an investigation. An important goal of unstructured problems is to 
put students in the active role and to foster their agency in mathematical problem 
solving.  
 

In IBMT learning is driven by unstructured tasks that give rise to multiple-
solution strategies. The strategies of the students, their interpretations of the 
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problem, their assumptions, calculations, representations and collaboration 
provide opportunities to reflect upon inquiry-related processes in mathematics. 
During this process teachers are proactive. They support and encourage students 
who are struggling and extend those that are succeeding through the use of 
carefully chosen strategic questions. They value students’ contributions - 
including mistakes, and scaffold learning using students' reasoning and 
experience. This requires in the classroom a shared sense of purpose, i.e. creating 
mathematics together, and ownership.  
 

Important to stress is that in daily practice not everything needs to be or can be 
changed towards inquiry-based teaching. The role of inquiry in daily teaching 
practices is one of the ingredients of good education. The pursuit of IBMT can be 
fostered by supporting teachers in extending their teaching repertoire towards 
topics like addressing processes of inquiry in daily practice, developing resources 
for IBMT, being aware of ways to learn concepts through IBMT, supporting 
collaborative work and measuring progress and evaluating students’ IBMT-
related competencies.  

Teaching strategies for IBMT 
PRIMAS1 was an EU-project that aimed at supporting teachers to collaboratively 
investigate IBMT pedagogies by designing and implementing modules for 
professional development. These modules included activities to connect inquiry-
related teaching methods with existing practices, innovative classroom activities, 
illustrated with classroom videos, and sample lesson plans. The modules were 
expected to enable teacher educators and teachers to be challenged and to act 
reflectively in new ways (Swan et al., 2013). 
 
Moving towards an IBMT approach raises many pedagogical issues for teachers. 
For instance: How can I encourage my students to ask and pursue their own 
questions? How can I help students to follow up these questions in profitable 
ways? How can I teach students to work cooperatively and to learn from each 
other? How can I manage all these new activities within the constraints of my 
daily responsibilities? These questions gave rise to the following topics that were 
elaborated in the PRIMAS modules to promote inquiry in daily classroom 
practice: 

1. organizing student-led inquiry; 
2. helping students to tackle unstructured problems; 
3. promoting concept development through inquiry; 
4. asking questions that promote reasoning (and include all students); 
5. supporting collaborative work; 
6. using self- and peer assessment to promote learning. 

Transformations of a textbook task 
We illustrate some examples of alternatives ways to use the textbook task that is 
presented in Figure 1. The structured version of the task presents a context, states 
the problem and exactly the information needed to solve it. The task asks for using 

                                                        
1 http://www.primas-project.eu/  

http://www.primas-project.eu/
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a formula and the context can be neglected. The task does not support applying 
or learning to apply mathematics outside the mathematics classroom. The 
unstructured version seems to provide opportunities for students to inquire the 
situation, to be mathematical creative, to collaborate, to critically reflect on the 
findings and to communicate their results. However, the unstructured version of 
the task also has the risk that students feel lost and don’t know what to do, or that 
parts of the task will ask so much time from the students that they are unable to 
reach a reasonable result within the timeframe of the lesson. To prevent this to 
happen, the teacher has a role in structuring the lesson. Consequently, the 
unstructured version of the task needs a structured lesson plan to scaffold the 
students’ inquiry.  
 

Lesson 1 
10 minutes: create groups & introduce the problem and the working plan and 
distribute the task 
10 minutes: students work in groups on the task 
10 minutes: discuss with the whole class whether all groups have an idea how 
to start and how to proceed. Exchange strategies and make sure that 
everybody has an idea what is expected. 
15 minutes: students work on the task, finish calculations and prepare the 
building blocks for their flyer. 

Lesson 2 
20 minutes: students finish their flyer 
20 minutes: presentations of a few examples 
10 minutes: reflection on the task (and positioning it in further work) 

 

Figure 2: A structured lesson plan for an unstructured task (see Figure 1). 
 

It should be noted that this lesson plan requires pedagogical skills to manage the 
classroom process. The teacher needs to change a few times during the lesson 
from whole-class discussions to group work.  
 
Another option to involve students in the inquiry-process - with more structure - 
is to cut the task into pieces. You could show only the introductory text and ask: 
What is the main problem?  Is any further information needed to tackle the 
problem? What strategy could you pursue to find answers? 
 

A patient is ill. A doctor prescribes a medicine for this patient and advises to 
take a daily dose of 1500 mg. After taking the dose an average of 25% of the 
drug leaves the body by secretion during a day. The rest of the drug stays in 
the blood of the patient. 

 

Figure 3: The situation of a task. What could be the main problem? 
 
After students formulated the problem by themselves, they can be given the 
structured textbook version. Probably the order of the questions now makes 
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more sense to them, since they had the opportunity to think of the situation and 
possible strategies by themselves (Ainley et al., 2009). 
 
The last option we use as an illustration of what can be done with textbook tasks 
is taking all sub questions and presenting them a different order, or as pieces of a 
jigsaw and asking the students to find the original textbook order.  
 
The task presented in Figure 4 gives students the opportunity to reflect on the 
structure of their textbooks. In many cases the tasks have a similar kind of 
structure, that reflect a sensible strategy to inquire the problem and to find the 
answer to the main question, but students are almost never asked to reflect on 
this strategy and to describe its characteristics (perform one calculation, 
systematically collect more data in a table, describe the calculation-process with 
a formula, draw a graph, and use formula and graph to solve the main problem). 
 

A patient is ill. A doctor prescribes a medicine for this patient and advises to 
take a daily dose of 1500 mg. After taking the dose an average of 25% of the 
drug leaves the body by secretion during a day. The rest of the drug stays in the 
blood of the patient.  
 
 What is the maximum of amount of the drug that can be reached? 
 
 Explain why you can calculate the amount of drug for the next day with the 

formula: new_amount = (old_amount + 1500) * 0,75 
 
 Finish the table. 

Day Mg of drug in blood 

0 0 

1 1125 

2   

3   
 

 

 After how many days has the patient more than 4 g medicine in the blood? 
And after how many days 5 g? 
 

 How much mg of the drug is in the blood of the patient after one day? 
 

 
Figure 4: The order of questions is mixed up. What was the original textbook 

order? 
 

More teaching strategies for IBMT 
We have presented three alternative ways of using a textbook task and 
transforming it in order to address inquiry in the mathematics lesson. They have 
in common that the teacher needs to be able to arrange classroom discussions and 
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provide students with thinking time. Another teaching strategy to discuss 
processes of inquiry with the whole class, to involve everybody, is the think-pair-
share strategy. The main idea is to let students think 2 minutes for themselves 
about a problem and note what they think, followed by 2 minutes for comparing 
thoughts with their neighbors, and finally 2 minutes for sharing the results with 
the whole class. This strategy provides all students thinking time and gives the 
teacher the opportunity to involve everybody in the discussion. 
 
In addition to the above tasks, one could also think of tasks that encourage 
students to challenge hypotheses (e.g. Figure 5). You could provide students with 
a set of statements that are related to the topic that you are teaching and let them 
decide whether these statements are always, sometimes or never true. If they 
think a statement is always or never true, they are expected to explain how they 
can be sure. If they think it is sometimes true, they need to describe when it is true 
and when it is not. 
 
 

Pay rise 
 

Max gets a pay rise of 30%. 
Jim gets a pay rise of 25%. 

So Max gets the bigger pay rise. 

Right angles 
 

A pentagon has fewer right angles 
than a rectangle. 

Birthdays 
 

In a class of ten students, the 
probability of two students being 

born on the same day of the week is 
one.  

Bigger fractions 
 

If you add the same number to the top 
and bottom of a fraction, the fraction 

gets bigger in value. 

 
Figure 5: Statements that are always, sometimes or never true. 

 

This task invites students to decide on the validity of statements and give 
explanations for their decisions. Probably, explanations will involve generating 
examples and counterexamples to support or refute statements. In addition, 
students can be asked to add conditions or otherwise revise the statements so 
that they become ‘always true’. This kind of activity is very powerful. The 
statements may be prepared to encourage students to confront and discuss 
common misconceptions or errors. The task of the teacher is to prompt students 
to offer justifications, examples, and counterexamples. This task offers students 
opportunities to discover the role of examples in mathematical inquiry. 
 
These examples of tasks for mathematics show the importance of carefully chosen 
resources for pursuing IBMT in the mathematics classroom. 
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Experiences with implementing IBMT 
There is some empirical evidence from different studies on the quality and effects 
of IBMT. The effects of IBMT include benefits for motivation, for the development 
of beliefs about mathematics as well as for understanding the relevance of 
mathematics for life and society (Bruder and Prescott, 2013; Blanchard et al., 
2010; Furtak et al., 2012; Hattie, 2009; Minner). However, some experts caution 
that this type of instruction can only improve learning if it is carefully designed 
and well-structured (Hofstein and Lunetta, 2004; Woolnough, 1991). 
 
Guided inquiry, in comparison with structured inquiry and open inquiry, was 
shown to be the most effective method of implementing inquiry in the classroom 
in combination with closed tasks that support learning of procedures and basic 
skills (Bruder and Prescott, 2013). 
  

How do we know when any teaching is effective? Many of the pressures on 
teachers today arise from the different expectations of student learning, which 
are often not clearly formulated. If we want students who are able to understand 
mathematics, enjoy mathematics and have an ability to work through problems 
and to draw conclusions, then IBMT with guidance could be thought successful. 
However, if our aim is for students to be able to achieve high marks in 
standardized knowledge-based tests then IBMT is sometimes less successful. 
 

Results of the internal qualitative evaluation of PRIMAS give a rich flavour of 
challenges and opportunities that teachers confront when experimenting with 
IBMT pedagogies (Maass, 2013). Most of the PRIMAS teachers consider IBMT as 
a student-centered approach which involves self-directed but guided exploration, 
asking questions, making discoveries, and testing assumptions in search of new 
understanding. 

Inquiry is about giving priority to students to generate explanations and engage in 
critical discourse instead of not requiring any thinking at all [...] in solving complex 
problems, students apply their knowledge to new real world problems, and engage 
in critical discourse with others about models, solutions and documentation. 
(Teacher from Cyprus) 

 
However, the implementation of attention for processes of inquiry within class is 
seen as a challenging but fruitful opportunity to design lessons in a different way. 
Teachers highlight the benefits that inquiry-based learning has for their students. 

From our own experience, we know the value of having found something by 
ourselves, instead of having simply been taught the solution. When teaching 
inquiry-based learning, students really learn an approach, they then have more keys 
for understanding. (Teacher from Switzerland) 

 

The teachers also emphasize the positive impact of inquiry-oriented processes on 
students reasoning. 

I have realized that there was an impact on students’ inductive reasoning. I was 
impressed by the ability of some students to make robust conclusions, and support 
them using mathematical evidence, in the form of models […] students’ oral 
participation has been dramatically increased […] especially the use of correct 
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mathematical terminology, something that is not easy at this age. (Deputy Head 
from Cyprus)  

 
Teachers indicate that in their own practice, they loved explaining concepts and 
procedures – and so do some of their students. However, lessons in which 
students have to struggle with open questions and problem-solving tasks appear 
to be also effective for discussing solution strategies. 

I liked teacher-centered teaching and I think that students still do like it. But they 
won’t learn that much since they won’t have to solve a problem themselves. They 
will get the problem, the procedure of solution and the solution itself at the end. 
(Teacher from Germany) 

 

In this context, the importance of students exchanging with their classmates is 
highlighted by the teachers: 

I discovered how important it is to get students to use that kind of opportunity 
(dialogue) to start figuring out what they know and what they might be able to 
learn from others. And then students might notice that they end up with an answer 
they may have thought they did not have. (Teacher from Norway) 

 

An example from the Netherlands 
Working with IBMT involves a change of roles, both for teachers and for students. 
Teachers take up the role of a learning-facilitator and students will be given a very 
active part. For example, one of the teachers took a mathematics textbook 
exercise from an algebra chapter and devised an unstructured version of the task. 
The original task consisted of a series of pyramids in which students had to add 
or multiply adjacent cells to determine the content of the cell above them. In some 
cases they had to reason ‘backwards’ to find the content of cells in a lower region 
(see Figure 6). With her adaptation of the task she wanted to get access to what 
students were capable of and what they thought to be easy or difficult. She first 
presented one of such pyramids and asked her students to try to find out how this 
pyramid was constructed and whether they could find the values of the empty 
cells.  
 

 
 

Figure 6. Pyramid as designed by the teacher 
 

After five minutes and some discussion, the task for the students was to make 
similar pyramids as an alternative for solving a series of textbook tasks. They 
could use addition or multiplication and had to design an easy and a difficult 
pyramid problem. The students did so with remarkable results (see Figure 7). 
Some students were careful in their attempts and created pyramids that were 
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rather close to the textbook example, while other students were trying to find 
possible extremes. These productions by the students gave the teacher an 
overview of the algebraic expressions that were within the reach of her class, from 
very simple to very complicated including, for instance, fractions, decimals, and 
negative numbers. 
  

 
 

Figure 7. An easy and a difficult multiplication pyramid designed by students 
 
During the activity, one pair of students posed the problem of the minimal amount 
of information that must be supplied before a pyramid can be solved. Other 
groups then took up this question and motivated them to design even more 
complex pyramids. The teacher reported that she noticed that her students 
improved their understanding of algebraic skills in this playful setting. Especially 
the moment where the students formulated the question about the amount of 
information needed was revealing, they tried many cases showing the scope of 
their algebraic skills and were practicing at the same time.  

The students became owner of the mathematics, were motivated to do mathematics, 
and I could better see their capacities. (Teacher from the Netherlands) 

 

Normally students practice algebra with straightforward tasks, like ‘expand’ or 
‘factorize’, and simply extend patterns without thinking deeply. With such tasks it 
is much more difficult to see what problems students encounter and whether they 
are able to use their algebraic skills in new situations. The teacher highly 
appreciated this change within the classroom but indicated that this was, 
respectively still is, a challenging process. Becoming familiar with these new 
teaching strategies needed for IBMT appears to be a process that requires time 
and attention.  

Challenges when implementing IBMT 
Teachers confront a number of conditions limiting the implementation of IBMT in 
day-to-day classroom practices. Main hindering factors are the mathematics 
textbooks that need to be covered, the time available to plan and implement IBMT 
activities, the available resources, and the assessment of students’ work. 

I think the biggest problem is the [class] time and time for planning of it. […] if you're 
looking at a very, very heavy amount of content in the syllabus then, fitting in the 
time to do inquiry-based learning is quite hard. Because you have so much to cover 
in a very short period of time. (Teacher from the UK) 
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Lesson design is demanding. I have to take into account many variables, and have 
everything well planned, if I want my students to actively engage into inquiry, and 
to actually deliver a student-centered lesson. (Teacher from Cyprus) 
 
Of course it takes a lot of time but it is not something additional. Actually, I learned 
to use inquiry-based learning to work on mathematical content. Students learn 
things in a much deeper way and understand more. (Teacher from Spain) 

 

Another concern for teachers is assessing student performance. A main priority 
for teachers is in helping students to do well in their assessments. Examinations 
in schools mainly focus on students’ capacity for reproduction skills. Therefore, 
teachers are in conflict to prepare their students for the exams or to implement 
IBMT within class.  

My primary task is to prepare students for the next external assessment, which gives 
them a certificate that helps them in their future. They don’t want more - and if I 
did more, well the first thing they would do is rebel. The next step would be that the 
parents would tell me that it is not my task to do this. (Teacher from Germany) 
 

It is true that in many countries, examinations and tests do not directly reward 
students for their ability to inquire and solve non-trivial problem. This is an issue 
that some governments are aware of and are trying to address.  A further potential 
hindrance for the implementation of inquiry-based learning concern students’ 
behaviour, and was mentioned by some teachers in the beginning of their 
participation in PRIMAS. They initially feared that working with IBL within a class 
of 30 students could be problematic in terms of noise and disorder:  

I thought “it’s impossible to do that in my classroom because my students will not 
be thinking about the activity, they will waste their time, they will talk about 
something else and the noise will be tremendous”. Then, I implemented that activity, 
and, I was surprised that everyone was involved and engaged, even as they were 
working in groups trying to obtain an answer. (Teacher from Spain) 
 

Supporting factors for implementing IBMT 
Scaffolding inquiry of students with well-planned questions (and other 
directions) is an important task for the IBMT teacher. By scaffolding we mean the 
use of teaching aids that have characteristics such as ‘responsiveness’ and ‘fading’. 
Here, responsiveness means that the scaffolding is adapted to students’ needs, 
and fading means that the scaffolding gradually disappears, as the students 
advance with their inquiry. The level of scaffolding needs to be adjusted to the 
level of the students. The teacher can vary to meet the needs of low-achieving 
students or to challenge high-achieving students. Within the lessons observed, 
teachers asked questions like: ‘How can you simplify this problem? What 
assumptions might be made?’ Then, after the students had formulated the 
problem, some teachers continued to ask: ‘Can you think of a systematic 
approach? What is a sensible way to record your data?’ As data was collected, 
others asked their students, ‘Can you see any patterns here? Can you explain why 
these arise?’ Towards the end, the teachers' focus was on communicating the 
findings: ‘How can you explain this clearly and succinctly?’ Asking these questions 
and sharing answers with the whole class supports the inquiry process. 
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Another important aspect that became apparent during the observations was that 
teachers need to create a classroom environment where students feel safe to 
speak out and to make mistakes. Students not only need to feel safe in asking 
questions, making mistakes and stating their opinion, they also need clear signals 
about which behaviors are acceptable.  

For example, I make mistakes too and students call my attention to it and calculate 
the task properly. I praise them for doing so and they like it. I think that is something 
that supports communication, too. Handling it this way: “Oh yes, I did it wrong. 
Sorry. You're right.” I show students that mistakes are nothing bad. So they have the 
courage to show mistakes and to admit them. (Teacher from Germany) 

 

In retrospect, the main learning aspects of an inquiry-based approach are linked 
to fostering students’ agency by providing clues, responsibility and confidence for 
performing an investigation. However, most teachers interviewed were 
particularly impressed with how this pedagogy motivated their students during 
mathematics and science lessons. Teachers talk about how inquiry-based 
learning links learning with fun: 

In my opinion the students look forward to the IBL tasks as they find them fun to do 
and are different from a normal traditional lesson. Through IBL students are given 
the opportunity to discover, present their findings and have their say during a 
mathematical lesson whilst before the teacher was doing everything in class. 
(Teacher from Malta) 

 

Teachers emphasized that it is important to explain to students the new 
expectations that they have of them: that they should learn to actively ask 
questions, seek answers, compare approaches and pursue their own lines of 
inquiry – without continually asking for help. They should also know how 
important it is to learn to work collaboratively, just as professional scientists and 
mathematicians do in the world around them. 

Conclusions 
This chapter described ways to pursue IBMT, and classroom experiences with 
IBMT as reported by teachers. The experiences show that teachers encounter 
challenges when trying to implement IBMT in their daily practice. The challenges 
highlight the need for a shared sense of values, beliefs and aims of mathematics 
education. Mathematics education is not only aimed at supporting students’ 
learning of algorithms and procedural fluency, but also needs to address 
competencies like creativity, dealing with missing information, making 
connections, critical thinking, collaborating and communicating. Tasks and 
teaching strategies that are inspired by processes of inquiry or that offer 
opportunities for inquiry-based approaches help to develop these competences. 
Furthermore, the teachers stress the importance of supporting conditions on the 
school level. Implementing IBMT asks for extra time to prepare and perform 
lessons and this needs support from colleagues and school authorities. 
 
The challenges that teachers and students are confronted with while trying to 
engage in IBMT, cannot be overcome when the interventions are isolated and 
incidental. In order to be able to change a teaching and learning culture that 
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supports IBMT, it is important that the interventions also align with the school 
context and contribute to the demands of the curriculum. 
 
A few important points can be made from the previous paragraphs. A successful 
implementation of IBMT asks for:  
1. The availability of IBMT resources, not as isolated tasks, but as modules that 

show how mathematical topics from the curriculum can be approached in a 
IBMT-rich way; 

2. Alignment with institutional conditions and constraints, including facilities 
and time available, and the official requirements and assessments of students 
and teachers; 

3. A teacher learning community (at least one other teacher and preferably an 
experienced facilitator) for carrying out classroom experiments, discussing 
experiences and otherwise promoting teachers’ professional development; 
opportunities to share professional knowledge with a broader (e.g. national) 
community, are also highly desirable. 
 

MERIA design of modules rely on two frameworks that are related to IBMT, 
namely RME and TDS. These are introduced in the following chapters. It is 
important to emphasize that both frameworks have emerged from decades of 
research, and it is neither possible nor necessary to present all of their features, 
in order to enable readers to use and construct modules on their own. More 
readings are suggested in the references for those who wish to deepen their 
knowledge of one or both of the frameworks. 
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3. The Theory of Didactical Situations 

Introduction  
Let us consider an example of how to organize a lesson which enables students to 
engage in inquiry and to construct knowledge autonomously. In the lesson 
proposed, students discover a special case of the important mathematical result 
that similar figures (informally, figures of the same “shape”) have proportional 
corresponding sides (i.e., there is a fixed “scaling factor” which allows to compute 
the sides in the second figure, if you know those of the first). This is sometimes 
referred to as Thales’ Theorem. In fact, it can be generalised beyond polygonal 
figures, but this is far beyond the secondary curriculum – even if similar, non-
polygonal figures appear in many real-life contexts, such as pictures shown in 
different sizes. Notice that the difficult notion of angle is not needed, and may not 
appear at all, in this activity. 
 

The students get the following instruction:  
 
Here are some puzzles (Example: “tangram”, Figure 8). You are going to make some 
similar ones, larger than the models, according to the following rule: the segment that 
measures 4 cm on the model will measure 7 cm on your reproduction. I shall give a puzzle 
to each group of four or five students, but every student will do at least one piece or a 
group of two will do two. When you have finished, you must be able to reconstruct figures 
that are exactly the same as the model (Brousseau, 1997, p. 177).  

 
Figure 8: The puzzle used in the puzzle situation 

 
 
After receiving the problem, students will start working without help from the 
teacher. The problem is posed to the students who are used to the idea of 
increasing the amounts by adding. However, when students add 3 cm to each side 
they cannot reconstruct the larger puzzle by assembling the pieces, as they do not 
fit. Students try to employ previously developed knowledge (enlarging by adding) 
to solve a problem, but the puzzle situation forces them to realize that the 
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reasoning they have used in the past is not working in this case, and that they 
need to develop new mathematical knowledge. The obstacle can be overcome by 
changing the strategy to a multiplicative method to increase the side lengths. It is 
important that students develop the ideas of proportionality by themselves, and 
in particular come to see the multiplicative model as required by the situation, not 
simply by the teacher. 
 
In the next step, the teacher invites all groups to formulate and present their 
findings. For example, some of the students might be invited to present and 
explain what they did to enlarge their piece of the puzzle. Also, groups report on 
whether their enlarged pieces fit together or not, and what they plan to do.  
 
To construct the new puzzle correctly, each student from a group must come to 
the same hypothesis that the side lengths of all of the pieces must be multiplied 
by the factor 7/4. The teacher is sure that the students have reached the desired 
goal of understanding proportionality if they validate their strategy by 
assembling the new puzzle.  
 
In the end, the teacher may formulate the idea of proportionality between 
geometric shapes in a formal way. Based on the discussion during the lesson and 
final reflection on the problem, students’ personal ideas become shared 
knowledge similar to what can be found in different media such as textbooks or 
online resources.  
 
The design of this situation of teaching is a classic product of the Theory of 
Didactical Situations. In the rest of the chapter we will present basic notions and 
principles of the theory, illustrated with further examples and guidelines on how 
to use this approach in the classroom.  

Personal and institutional knowledge  
The Theory of Didactical Situations (TDS), which was initiated by Guy Brousseau 
from the late 1960’s, has produced several ideas and results which can help 
teachers deploy and develop their mathematical knowledge, as they work with 
the design and orchestration of teaching. TDS supports teaching that lets students 
be the inquirer and constructor of mathematical knowledge in a way that captures 
the essential features of IBMT.  
 
In TDS, it is very important to distinguish between two kinds of knowledge: 
 
Institutional knowledge (sometimes called public or official knowledge) is the 
knowledge presented in textbooks, webpages, research journals and other shared 
resources.  It represents a synthesis of mathematical activities, done by 
individuals but subsequently validated by others, and made public. In these 
resources, mathematical knowledge is presented in a concise and precise form, 
while the inquiry process which leads to its development is usually not visible. 
This deductive way of presenting mathematical knowledge is shared and 
evaluated by a community of researchers, teachers and occasionally by the public 
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in general. A simple example is given by the presentation of the Pythagorean 
Theorem as 𝑎2 + 𝑏2 = 𝑐2, where a and b are the legs and c the hypotenuse of a 
right angled triangle. Today this formula is the “institutional knowledge” that 
teachers introduce to their students and which is remembered later on in life, 
rather than a geometrical idea or argument behind it. Institutional knowledge is 
also sometimes called shared, public or official knowledge.  
 
Personal knowledge is the knowledge that students (and others) construct while 
interacting with a mathematical problem. These ideas or knowledge will often be 
implicitly given and related to the context they are developed in. Student may 
develop personal knowledge about the Pythagorean Theorem by playing with 
triangular and square tiles, as illustrated in Figure 9.  It clearly takes more to 
establish the official form described above. 
 

 
Figure 9.  Tiles assembled to illustrate Pythagorean Theorem 

 
In the puzzle example, the personal knowledge which students construct at first, 
concerns only the success or failure of specific methods to magnify pieces. The 
official knowledge aimed at is that if to figures A and B are similar (have the same 
“shape”), then the ratio between corresponding sides (a/b, where a is a side in A, 
corresponding to the side b in B) is constant. Several situations may be needed to 
reach the official knowledge in something close to this level of generality. At the 
end of the puzzle situation, one may at most reach the consensus that only 
multiplication by 7/4 seems to work in the given case. 
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When students interact with a mathematical problem and develop a personal 
answer to the question at stake, they expand their personal knowledge. The 
students’ personal knowledge is most likely to be slightly different from the 
institutional knowledge. It will be further developed and formalized when shared 
and discussed with others. Hence the communication with classmates or peers 
will further develop and formalize the students’ initial ideas.  
 
It is essential that the teacher challenges his students’ personal knowledge by 
posing new problems which require knowledge they have not yet fully developed. 
In this way, personal knowledge is being validated. It can be validated either by 
the teacher, by the problem situation itself, or compared to other students, e.g. to 
their strategies when solving a problem. In this way, personal knowledge is 
transformed and becomes more formalized. This means that the knowledge 
becomes closer to what can be regarded as institutional knowledge.  

Didactical and adidactical situations 
The distinction between personal and institutional knowledge presented in TDS 
enables teachers to organize lessons using inquiry situations, i.e. IBMT approach. 
A part of the idea in IBMT is that teaching should offer students the opportunity 
to engage in activities similar to those of a researcher.  
 
A key component of designing such situations is the notion of the didactical milieu. 
The milieu is the environment with which the student interacts to obtain new 
knowledge. It consists of the problem, students’ previous knowledge, and 
artefacts such as pen and paper, ruler, calculator, CAS-tool (Computer Algebra 
Systems), a puzzle etc. When preparing the lesson, the teacher specifies the target 
knowledge and designs an appropriate milieu for the students’ development of 
that knowledge. However, milieus can be more or less appropriate with respect 
to developing a certain piece of knowledge. In the puzzle situation described 
above the milieu consists of the puzzle, new sheets of paper, scissors, rulers, and 
students’ previously developed knowledge. The (epistemological) obstacle which 
the students encounter stems from the mathematical nature of the problem. 
Hence the milieu carries a high potential for the students to construct the 
intended knowledge without the teachers lecture neither on the proportionality 
between geometric shapes nor the principles of similar triangles. The milieu 
creates among the students the need to construct this knowledge.  
 
It might happen that not all of the students consider the implications of the 
multiplicative strategy on preservation of the angles, though this is needed if the 
pieces should be joined together in a new large square similar to the initial one. 
Hence the correct strategy leads to the development of the intended institutional 
knowledge. The TDS approach to teaching and learning is often described in terms 
of a game. The design of the situation and its milieu can be compared to outlining 
a field for a sports game, and formulating the rules of that game. When the 
students win the game, they have developed the optimal strategy for the game. 
Hence, winning corresponds to learning and the optimal strategy means that the 
students have developed the intended knowledge and methods. In other words, 
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the game creates the need for the development of the winning strategy.  And 
designing the “field to be played in” (the situation) should be done in order to 
maximize the potential for students to find this strategy. 
 
When the milieu is properly designed, the students can interact with it 
autonomously, without further guidance from the teacher. Adidactical situations 
are those where the students are engaged in the problem and explore the milieu 
without the teacher’s interference. In these situations, the students are 
developing their personal knowledge, by adapting it to the problem they work on, 
through further inquiry activities and testing of ideas in the milieu, or through 
formulation of arguments, as they try to convince peers.  
 
Didactical situations are those where the teacher explicitly interacts with the 
students, in order to further their learning of something specific. Indeed, 
didactical refers to the intentional act of someone to share some knowledge with 
somebody else.  One main function in didactical situations is to initiate, regulate 
and moderate adidactical situations, and to ensure that the knowledge developed 
there becomes shared, validated and (for the relevant parts) recognized as 
“correct”. As shown in Figure 10, means that didactical situations consist in the 
teachers’ interaction with adidactical situations. The adidactical situations could, 
of course, be more or less rich in potential – from tacit listening to teachers’ 
explanations, to active engagement in a rich problem situation. Indeed, the main 
learning potential of students lies in adidactical situations since those carry the 
potential of students developing their personal knowledge, which can become 
shared knowledge through the didactical situations. In other words, the learning 
potential lies in the dialectic between adidactical and didactical situations or 
between personal and shared knowledge.  Figure 10 also shows how didactical 
situations as a whole consist in a “double game”: the students’ game with the 
milieu (adidactical situations) and the teachers’ game with the adidactical 
situations (which she plans, devolves and regulates).The figure, in particular, 
shows that an adidactical situations does not imply the teacher is absent or 
inactive. Spontaneous self-study is not an adidactical situation; it is non-didactic.  
 
Adidacticity is a special phenomenon within didactical situations: the person who 
wants to share some knowledge can purposefully withdraw from the interaction, 
in order to let the learner act in ways which are useful or even necessary to obtain 
the knowledge. This is a very general phenomenon, which is not at all an invention 
by TDS; one observes some element of adidacticity in most didactical situation. Of 
course, the quality of the students’ autonomous acts depends on the milieu. 
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Figure 10: Didactical situations as a double interplay 

 

The role of the teacher  
It is important to clarify how the teachers’ role in a TDS based design is different 
from what many teachers may be used to in their normal teaching.  
 
In much commonly observed mathematics teaching, the teacher first introduces 
a new notion, method or theorem. Then he shows examples in which he uses the 
new knowledge, after which the students imitate the teacher by solving similar 
exercises. Finally, the students’ work is assessed by the teacher. In such an 
approach, the teacher starts by institutionalizing the institutional knowledge. 
There is no milieu for the students to explore – or at least it is a poor one with no 
room for the students’ inquiry processes, since it is evident that the winning 
strategy is to imitate the teacher’s examples. While solving the exercises, the 
students are active and probably formulate answers in notebooks, but this is not 
inquiry, as they know the good method (assuming they have listened in the first 
place). The validation relies entirely on the teacher who approves or rejects the 
students’ answers. In this setting, the teacher is the source of all true knowledge; 
the students merely absorb and follow the good example of the teacher. 
 
The approach has drawbacks. When the Institutionalisation is placed at the 
beginning of the teaching, providing the students with all the relevant official 
knowledge and merely asking them to “apply” it in specific cases, the students 
may not construct appropriate personal knowledge – in some cases, they merely 
adopt the official knowledge as a tactic to solve certain tasks given by the teacher 
or posed at exams. They may keep, in parallel, contradictory ideas and beliefs, 
including misconceptions. This ruins the potential of a rational process of 
knowledge construction, which is placed in the dialectic between personal and 
institutional knowledge, as illustrated in Figure 11. When students think, talk and 
write about the exercises, they try to do what their teacher expects and rewards, 
even when they have no clue as to what it means or why it works. The learning 
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outcome of repeating the solution strategy may be surprisingly poor, since it is 
fully depending on surface recognition of the tasks it applies to. Most teachers 
have witnessed absurd cases of how students fail in such an approach. 
 
By contrast, when the public or institutional knowledge is clearly recognized as 
consistent with knowledge the students themselves have constructed, while 
interacting with a suitable set of problems (in adidactical situations), the public 
knowledge appears to them as rational and well-founded, and they will more 
easily transfer it to new types of problems, as they know the rationales behind it.  
But to achieve this better result, the teacher will need to abstain from merely 
telling and training. This requires much more of the mathematics teacher than is 
normally assumed.  
 
In fact, according to TDS, the role of the teacher must design or select situations 
in which students can develop personal knowledge corresponding to institutional 
knowledge, including the rationales of the latter. Also, the teacher needs to 
orchestrate the dialectics shown in Figure 11, which is cyclic: to teach new 
knowledge, the teacher designs and devolves a mathematical situation, in which 
students may develop their personal knowledge. The teacher also needs to help 
students share this knowledge in the public domain of the classroom, where it can 
eventually be aligned with the new knowledge which the students should acquire. 
What teachers should know is not just, or primarily, the institutional knowledge; 
it is the situations that enable students to acquire the knowledge. 
 
 

 
Figure 11: Interplay of personal and institutional knowledge in didactical 

situations 
 
 

Didactical contracts  
Even for experienced teachers it can be a challenge to navigate in inquiry based 
scenarios, as they should not simply feed the students with official knowledge and 
oversee their digestion of it, but instead, they must guide students in their own 
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construction of the knowledge. When the teacher knows all the right answers and 
sees students take wrong or less favourable approaches to a problem, it is a 
genuine challenge not to correct or guide the students in the direction of the best 
strategy. It is very important that the teacher knows what parts of the knowledge 
have to be constructed by the students in adidactical situations (without teacher’s 
intervention) and which may be institutionalised directly by the teacher. In a 
teaching situation, students and teachers have mutual expectations about each 
other’s roles and responsibilities in the classroom. The collection of these 
expectations is called the didactical contract of the situation. It is not a contract in 
the ordinary sense of a written document; still, we can observe its effect in 
teachers’ and students’ actions.  For instance, when students asks the teacher to 
tell them if their solution to a linear equation is correct, they show their 
expectation that it is not (yet) their responsibility to control the correctness of 
such a calculation.  The teacher may act accordingly and tell them his opinion, or 
he may try to adjust this part of the contract by organising a student game with 
the new problem (what techniques exist to ascertain the correctness of a 
proposed solution to a linear equation). 
 
If students are used to a teacher providing them with answers from the very 
beginning, a certain amount of frustration can occur when they are given open 
ended inquiry based activities. In these situations, students will often ask the 
teachers, more or less indirectly, to provide them with the expected strategy. It 
can be tempting for the teacher to explain the students what to do – it’s clearly 
easier for everyone. However as explained earlier, this will ruin the learning 
potential of the teaching situation. To prevent such frustrations it can be helpful 
to begin by explaining to the students that the teaching is going to change and that 
they are expected to engage in solving problems even if they feel unprepared.  
 
When the students start to experience that the teacher’s Institutionalisation in the 
end is merely a reformulation of personal knowledge they have constructed 
themselves, they will feel that what they were doing is meaningful and important, 
and will gradually accept their new roles and responsibilities. There is lots of 
evidence that students will also, over time, develop a more positive relationship 
with mathematics as a whole: instead of a meaningless and endless inventory of 
given answers, mathematics will appear to them as a rational, challenging and 
satisfying enterprise – much as it is to successful researchers. 

The phases of didactical situations 
The idea of TDS is to create situations that address a well-known obstacle 
regarding a piece of mathematical knowledge, which create the need for the 
students to develop or construct new mathematical knowledge. To design and 
calibrate such situations is a core element of TDS and its “didactical engineering”.  
 
Teaching situations are organized into five phases. We will describe each of them 
together with comments on their role regarding students’ learning. The 
sequencing of the phases is not strictly given and an overview will be provided 
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later. We will illustrate all phases using two examples. The first one is the puzzle 
situation presented in the introduction, and the second is the famous Race to 20: 

The goal of the Race to 20 is to learn how division provides the answer to a new 
class of problems, along with providing students with an early acquaintance with 
proofs (to justify “winning strategies”). Concretely, students are expected to find 
and justify that all the winning numbers are 20, 17, 14, … , 2 (numbers less than 
20 whose remainder after division by 3 is 2). Experimentations with the situation 
confirm that students  discover these numbers as partial winning strategies and 
in that order, and thus build up final strategy (rest by division by 3) gradually, and 
on the way in fact also discover some basic objects and principles of modular 
arithmetic, such as (what to the mathematician is) a specific congruence class.  
 

Devolution phase 
The first phase is called the devolution phase. In general, devolution is a transfer 
or descent of something to a lower level. In TDS devolution is the starting point. 
It is the phase in which the teacher presents the problem and explains the rules 
for solving it. In other words, the teacher hands over the milieu to the students. In 
the game terminology, the teacher presents the playing field and the rules of the 
game. It is important to make sure that the students have understood the rules 
and are able to engage in the intended activities when the devolution phase is 
completed. In the puzzle situation, it is obvious how to play the game in the sense 
that students should create new pieces and construct the enlarged puzzle. In this 
phase the teacher does not provide more help. In the devolution phase of the Race 
to 20 the teacher presents the rules but also engages in one game with a student, 
which serves as a demonstration at the blackboard of how the game is played. 
Whether the teacher decides to hand over the milieu through an example of the 
activity or simply by presenting the milieu with its rules and artefacts depends on 
the concrete problem and situation.  
 

Action phase 
In the action phase students autonomously engage in the problem. In the puzzle 
situation, students will initially employ their previous experience from 
mathematical problems of increasing magnitudes by adding 3 cm to all sides of 
the geometric shape they were given. To employ previously developed knowledge 
and experience is a natural initial hypothesis, even if it proves to be wrong. 
 
In the example of the Race to 20, the students are asked to play the game together 
with the person next to them. In the beginning the students’ work might be based 
on “trial and error” and not carry any explicit strategy. Though, experience with 
the game might gradually indicate that the person who says 17 can win the game 
no matter what the other player adds to 17. 

The students are supposed to play a game where the winner is the one who 
first reaches the number 20. Two players play against each other. One player 
starts the game by choosing the number 1 or 2. The other player adds 1 or 2 
to the previous result both striving at being the one to say 20. 
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What the two examples have in common is that they both contain a rich milieu to 
support students’ development of some personal knowledge regarding the 
problem they are engaged in solving. In this phase, the knowledge may be rather 
implicit and rudimentary, and it can be difficult (if possible at all) for the students 
to formulate the assumptions involved in the action they take. The students draw 
on their previously developed heuristic competences, but at the same time, 
develop them further. The phase can also be said to have similarities with 
researchers’ first approach to an open problem. They might know the regulation 
of their game or their milieu as the definitions, lemmas, and theorems of their 
research field, as well as the generally accepted mathematical techniques 
associated with this field. But they still may just play with assumptions, and have 
no definite “theorem” to prove.  
 

Formulation phase 
In the formulation phase students are required to present what they did in the 
action phase; initial ideas, hypothesis or simply what they have tried to do so far. 
This can be arranged in different ways in the classroom, but it is not always 
enough to require the students to engage in a classroom discussion. First of all it 
is often the same eager few students who engage in classroom discussions. This 
is a problem if we want all students to engage in inquiry based learning. In IBMT 
communication and personal hypotheses must be shared and commented on by 
peers in order to formalize the personal knowledge of each student, which starts 
to take form in the students’ minds while dealing with the problem in the given 
milieu. This means that all students need to formulate their personal ideas and 
should present as well in the formulation phase. Often this can be done in minor 
groups. 
 
In the puzzle situation, the gathering of pieces represents a formulation phase 
where each student presents and explains his or her strategy of constructing a 
new piece of the puzzle. The students are, as a group, expected to encounter the 
obstacle of pieces not fitting together. Hence, it will lead students to discuss the 
strategies they have already tried out and new ideas regarding other approaches 
could possibly be developed. Even if one student got the right strategy from the 
beginning, this person must convince the rest of the group through mathematical 
arguments, which can be understood and accepted by the rest of the group.  
 
In the Race to 20 example, the formulation phase is carried out as a new round of 
games where each neighbour team of two players play against another team. To 
agree upon a shared strategy forces the students to share personal knowledge 
and convince each other upon what can be the optimal strategy of their team. 
Again, this verbalizing of experience and ideas is an initial step towards the 
creation of institutional knowledge. The functioning of the formulation phase is 
to create a situation where students are forced by the milieu or the regulations of 
the game to articulate the experience and ideas they gained from acting upon the 
problem initiating the construction of elements of mathematical theory. 
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Validation phase  
In the validation phase, students are testing their strategies or hypotheses against 
the milieu. This means that the work of the students can be validated without the 
teacher telling them whether they are right or wrong. The mathematical problem 
will to some extent provide the students with the answers regarding the viability 
of their answer or strategy if the situation and milieu is designed strong enough 
to do so.  
 
In the example with the puzzle the milieu is designed in a way where the pieces 
of the puzzle cannot be put together and form an enlargement of the first puzzle 
if the students use an additive method, or in fact any other method than the 
multiplicative one. Therefore, when students initially might choose the less 
productive strategy the validation phase will show them that their idea was 
wrong and that they need another strategy, which later can be validated in the 
same way. It should be stressed that a productive strategy should be within reach 
of the students’ mathematical ability. If the students get “stuck” in a problem with 
no ideas on how to proceed, this of course will be counter-productive with respect 
to development of mathematical curiosity and inquiring mind.  
 
In the Race to 20, the validation is largely a matter of having the strategy that wins 
every time. The winner is assumed to have the strongest solution strategy. If not, 
both teams could develop the optimal strategy. Or both teams continue with no 
real strategy. Even if the winner has the best strategy of the two teams, the team 
might not have developed the optimal strategy from the very beginning of the 
game. In such a case the teacher can choose to divide the class into two large 
groups, ask them to prepare optimal strategies and in the end battle against each 
other. This can be regarded as an additional formulation phase where students 
try to convince each other about strategies. Finally, the last match can take place 
where the winner’s strategy will prove to be the strongest – be validated so to 
speak. 

 

Institutionalisation phase 
The last phase is the institutionalization and here the personal knowledge will 
finally reach the state of institutional knowledge. This phase will most often be 
carried out by the teacher gathering ideas, summing up main points of the shared 
strategies and present it as one optimal strategy. The presentation of what is 
being institutionalized will often be a presentation of mathematical knowledge 
being concise and accurate as in the textbooks.  
 
In the puzzle situation, the teacher might introduce the informal idea of similar 
figures, as “one being a magnification of the other” (no magnification being “same 
shape and size”), using a discourse similar to official guidelines or textbook 
material for teaching at the given level. The fact that sides are proportional is 
conveniently expressed through the multiplication by a common factor (7/4) 
which was shown, experimentally, to produce a magnified puzzle, similar to the 
original. More advanced ways of articulating the relation between the initial and 
the created figures in terms of mapping could be too advanced for 14-years old. 
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The essential point is that the mathematical knowledge is established from 
experience and reasoning, rather than being merely posed as an article of faith. 
This is in a sense even more difficult to achieve at a level where more formal 
definitions and arguments are still out of reach for the students. 
 
In the example with the Race to 20, what is being institutionalized is the winning 
strategy. This can be reduced to the list of numbers a player should strive to say 
in order to control the game and win it in the end. It might be relatively easy for 
students to point out the number 17 as important as mentioned earlier. The 
winning numbers or the strategy can be written as the numbers N =3n+2, where 
n is the number of a given round in which w is the winning number. If you start 
by choosing number 2 you can have control all the way through. For the students 
to gain that insight might require that the teacher continuously encourages the 
students to improve their winning strategy. Depending on the level, one may 
eventually analyse the more abstract game “Race to N while adding one of the 
numbers 1, 2, … , n at each step. And then modular arithmetic is around the corner. 
 
The amount of mathematical detail presented by the teachers in this phase should 
align with the activities carried out by the students. It should be a synthesis of the 
knowledge constructed by the students in order for them to recognize and relate 
their personal knowledge to the knowledge being institutionalized and deemed 
the shared knowledge of the class.  
 
It is important that this phase does not end as a lecture making the students 
actions needless – the institutionalisation should be a continuation of the shaping 
of students’ knowledge regarding the given problem. If the teacher starts 
lecturing and goes beyond the students work, the teacher risks that the students 
perceive their actions as an excuse for the teacher to lecture on the topics which 
really matter. In those cases, the students are not likely to treasure or engage in 
mathematical inquiry and autonomous construction of knowledge, but will 
imitate the teacher when doing mathematics.  
 

On the importance of adidactical situations 
In teaching situations where the students are not progressing as expected, the 
teacher may feel tempted to move to phases where they are in control of the 
situation. However as hinted, this usually ruins some of the potentials for 
students’ learning. The devolution and Institutionalisation are didactical 
situations. The action is an adidactical situation, and the last two can be 
somewhere in between; but one should strive at maximizing the role of 
adidactical components. In particular, elements of adidactical validation – 
without the teacher as arbiter – are often crucial to ensure that students develop 
a fully rational relationship to the target knowledge, rather than a hit-and-miss 
approach where the “hit” is only recognised through the teachers’ approval. In 
general, we speak of the adidactical potential of a didactical situation – that is, the 
potential for students to work autonomously with its mathematical problem, and 
based on that, reach the target knowledge It is an important idea for teachers to 
seek to realize the full adidactical potential of the situation – through appropriate 
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choices in the phase of devolution, and by carefully adjusting the devolved milieu 
to the students’ capacities (obviously, without trivializing the problem). 

 

Summary of the phases 
In Figure 12, we provide an overview of the five phases that make up didactical 
situations. 

 Role of 
teacher 

Role of 
students 

Milieu  Situation 

Devolution Introduces, 
hands over 
the milieu 

Receive, try to 
take on a 
problem 

Is being 
established 

Didactical 

Action Observes 
and reflects 

Act and reflect Problem is 
being explored 

Adidactical 

Formulation Organizes, if 
needed 
initiates 
through 
questions 

Formulate as 
specifically as 
possible 

Open discussion Adidactical 
or didactical 

Validation Listens and 
evaluates if 
needed 

Argue, try to 
follow others’ 
arguments  

Guided 
discussion  

Often 
didactical  

Institutiona-
lisation 

Presents 
and explains 

Listen and 
reflect 

Institutionalised 
knowledge 

Didactical 

 
Figure 12: An overview of the TDS phases, their functioning and actions of 
participants in the teaching and learning (translated from Winsløw, 2006, p. 140) 
 
As stated in the beginning, the five phases are not just used as design tools, which 
only apply to teaching developed on the basis of TDS. The phases can be used to 
analyse any mathematics teaching (for instance to identify if some phases are 
missing or underdeveloped).  Even if the teaching is very different from what we 
have presented in this chapter, the phases still apply to the analysis of the teaching 
– and for teachers, they provide an important instrument to distinguish crucially 
different parts of their teaching, which have distinct roles and effects for their 
students’ learning. 

 

The dynamic use of the phases 
In the two simple examples used throughout the presentation of the phases, it is 
evident that each of them are designed in ways so that the didactical milieu 
sustains the students in their actions, lets them experiment and formulate 
hypotheses (both good and bad), and provides conditions that are strong enough 
to validate these hypotheses. Concretely, the puzzle pieces are impossible to 
assemble, or the students keep losing some games. The two situations also 
represent somewhat strict interpretations of the phases and how they are linked. 
What happens if the teacher hands over a milieu with a problem which the 
students are unable to solve?  
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When designing mathematics teaching, it is of course important to have or gain 
some insight regarding the knowledge students already possess. The teachers’ 
knowledge of this can be based on the curriculum for middle school mathematics, 
the textbook which the class has used previously, or other resources indicating 
expected outcomes. But even when students are supposed to have learned 
something it can be a good idea to “check” what they actually remember from 
earlier classes, as part of the devolution phase.  
 
A straightforward way of checking this is to ask the students e.g.: do you 
remember the Pythagorean Theorem? Although this carries the risk that students 
are unwilling or afraid to admit that they cannot remember the theorem. Some 
students will do this to please the teacher. Others are afraid to “lose face”. A more 
fruitful way to ask could be: what do you know about right-angled triangles? If 
they do not mention the expected knowledge the teacher might need to devolve a 
new problem to the students before handing over the intended problem and 
milieu. This new problem should provide the students with the possibility of 
rediscovering the knowledge they might have forgotten and get a shared starting 
point, by reconstructing the knowledge they were expected to possess already. 
 
A similar problem can be encountered during the action phase: the students might 
misunderstand the devolution. In the puzzle example, they do not have a clue 
about alternatives to additive enlargement of side lengths of the shapes. How to 
overcome such a challenge in the teaching situation depends on how many 
students are unable to engage in the problem and the students’ mathematical 
achievements in general. In these situations, the teacher must have thought 
through how to regulate the milieu. The risk here is to give away the target 
knowledge, which the students are supposed to construct. In the puzzle situation, 
the teacher can initiate a formulation phase where students share their 
preliminary ideas, and then make a table showing side lengths in the given puzzle 
in one row, and the magnified side lengths in the other. This may give rise to the 
idea that more “methods” may exist to magnify, as a rudimentary idea of 
functions. Indeed, 4 can become 7 as a result of more than one calculation. A 
crucial question which may arise and be discussed is: what happens to a side of 
length 1? Does it really become 1+3=4 after magnification? Considering that a side 
of length 4 is composed by four pieces of length 1, may provide a clue;, as four 
magnifications of 1 should form, together, a side of length 7. With such 
considerations, coming as much as possible from the students themselves, even 
the students who had no ideas in the beginning might be able to develop a 
different approach to the given problem. This means that the phases can be used 
dynamically, in a controlled way. Depending on the students’ engagement with 
the problem and milieu it can be reasonable to move back or forward in the 
phases in order to secure that everybody can act and construct some personal 
knowledge regarding the problem at stake. The interplay between personal and 
shared knowledge is a crucial dynamics which can be controlled by systematic 
and planned use of the phases.  
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A more elaborate example for high school 
In this section we present an example of a TDS based teaching design with the 
learning goal “to introduce the idea and some methods of optimization”. The 
problem, which the students should engage in, is the following: 

One strategy leads to a precise answer, theoretically developed, but inconclusive. 
It still requires a considerable amount of algebraic operation based on students’ 
knowledge of, for instance, geometry or regression. In both cases the need for new 
methods for solving optimization problems becomes visible. 
 
The milieu consists of the problem, actual strings (e.g. 5 strings per group of 
students), a ruler, scissors and maybe a calculator or a computer. The devolution 
phase is initiated by the teacher, who asks the class: “what do you know about 
areas of geometric shapes?” This is assumed to remind the students about 
formulas such as the area of a square and triangles: 

 
𝐴𝑠𝑞𝑢𝑎𝑟𝑒 = 𝑠2  (s being the side length), 

𝐴triangle =
1

2
ℎ𝑏  (h is the height and b the base length)  

             𝐴triangle =
1

2
𝑎𝑏sin𝐶       (where a and b are side lengths in the triangle and C 

is the angle between them). 
 

Other shapes might be covered as well. After sharing this institutional knowledge 
on areas, the students are divided into groups. Each group gets five strings, 
scissors, and a ruler; they are allowed to use calculators or computers if they feel 
like it. The groups are now handed over the problem. This entire phase is a 
didactical situation where the teacher is the moderator of the classroom dialogue.  
 
In the action phase, students are starting to work on the problem. Here a number 
of strategies can be chosen and we will mention three of them. Some students 
might choose a “trial and error” strategy meaning: cutting a string, creating the 
two shapes, measure and calculate the area of the square and the triangle. The 
same string can be used to create two pairs of shapes. Then the next string is cut, 
followed by new measurements etc. In the end the students might get the sense 
of where the optimal cut will be based on their experiences. Other groups might 
get the idea of using such measurements as data. These can be depicted in a 
computer program, graphic calculator or drawn with a pen on paper producing a 
graphic representation of where to cut and the sum of areas. If data is well chosen 
in the sense they cover the entire string including the area of the minimum point, 
these will indicate a parabola. If the data points are plotted in a computer program 
the students can carry out a regression to get a formula of a function describing 
the data. Depending on the strategy and tools available to the students they can 

You are given a string of length 1m. This string should be divided into two 
pieces. One piece is used to form a square and the other to form an equilateral 
triangle. The question is, where to cut the string in order for the two geometric 
shapes to cover the minimal area together? 
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find the minimum of the area function, estimating the least -value based on 
where the data point is placed in the coordinate system. If the students use pen 
and paper, they can draw an approximation of the parabola, which describes the 
data points. If the students use a graphic calculator or a computer program they 
can use regression to find the formula describing the relation between the area 
and the point where they cut the string. Using a CAS-tool the students can find the 
extremum point by letting the program analyse the graph or they can do it simply 
by looking at the graph. If the students have carried out the correct regression 
they will get a formula on the form  

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, 
 

where f is the area and x is the length of one piece of the string, and in this case 
the least total area is given by 

𝑦 = −
𝑏2−4𝑎𝑐

4𝑎
, 

which corresponds to  

𝑥 = −
𝑏

2𝑎
. 

Students choosing this latter strategy of course need to have been taught about 
(second degree) polynomials, parabolas and how to calculate the extremum 
points of those. 
 
Other groups might consider the problem as an algebraic problem. If the 1m string 
equals 4 sides of the square, 4s, and three sides of the triangle, 3t, then we get the 
equation  1 = 4𝑠 + 3𝑡.  Next, the students can express the total area as 

Atotal = Asquare + Atriangle . 
  
This function is a second degree polynomial where you can find its least value by 
the same methods as described above, if the regression strategy was chosen. 
This phase is adidactical. The teacher refrains from interfering with the group 
work, but can assist with guidance on how to manage the CAS tool, calculator or 
other more practical problems, if needed. At the same time, the teacher gets an 
insight of which groups have chosen which strategy or what kind of challenges 
the groups are dealing with during their inquiry. This concrete example captures 
the idea of an open ended approach, where students are posed a problem, which 
might have a multitude of solution strategies all converging towards one answer. 
 
After the first brief phase, students are asked to present their strategy for solving 
the problem. To verbalize their actions helps students to become explicit about 
their somewhat vague ideas and hypotheses from the inquiry process. One can 
argue that the group work represents the first formulation phase in the sense that 
students in each group need to agree upon strategies or hypotheses in order to 
work together. Further the action in groups might lead group members to reject 
ideas and pursue others. This process can also cover elements of validation. From 
the first experiences of cutting, measuring and calculating areas students might 
believe that now they know where to cut the string. But a third calculation might 
lead to an even larger area than the first two calculations. The group then needs 
to consider their strategy. Hence in the group work all of the adidactical or 
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potentially adidactical situations might have taken place before sharing strategies 
with the other groups. 
 
When students have reached an initial answer to the problem, the groups are 
required to present their work to the rest of the class. As a first presentation, the 
groups could simply be asked to give the length of one of the pieces of the string 
in order to see if everybody agrees upon where to cut. If the groups do not agree 
there are even more reasons to present their own and listen to the other groups’ 
strategies. It is expected that this will make some students realize that a “trial and 
error” strategy is less powerful when striving for a precise answer, but also that 
their work so far can be used if they change to a regression strategy.  
 
Here the formulation phase can have an overlap with a validation phase. All the 
suggestions for where to cut the string can be tested in the milieu. For each 
suggested length, the total area of the square and triangle can be calculated. In 
this sense the milieu can assist the validation of which group has proposed the cut 
relating to the least area. The challenge here is to engage students in discussing 
their chosen strategy as well. Therefore the teacher can ask if we can be sure that 
there is no better choice of a cut. This means if the class has accepted the task to 
be solved by “trial and error”, they now need to engage in more precise arguments 
as well. 
 
A challenge for those students who choose regression is to find out which kind of 
function actually describes the situation in the best possible way. If they only have 
data from below or above the extremum point they might consider the relation to 
be e.g. linear or exponential. To avoid these situations the students must be asked 
to what extent these relations actually make sense. This can be regarded as a new 
devolution of a slightly different problem within a similar milieu.  
 
The optimal strategy cannot be validated by testing against the available milieu. 
Therefore the teacher plays a more active role in this part of the validation, but it 
is still important that the rest of the class is also convinced about the presented 
strategy. 
 
In the Institutionalisation phase it is important that the teacher sums up the ideas 
and relates them to each other. For example, students who initially chose “trial 
and error” did the same as those producing a data set. And those who produced 
data actually found points, which in theory should lie on the graph representing 
the area function. What the strategies have in common is how to find the exact 
value of the least area – the optimization problem. In all cases the calculations are 
not simple, though they are manageable. This creates the need to start talking 
about other methods for optimization problems, especially in cases where we end 
up with higher degree polynomials. 
 
Further examples of applying these ideas and other principles to design IBMT 
based modules are given in other MERIA project publications (see 
http://www.meria-project.eu/). 

http://www.meria-project.eu/
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4. Realistic Mathematics Education  

Introduction 
As mentioned in previous chapters, Artigue and Blomhøj (2013) point out how a 
number of well-established research programmes in mathematics education have 
developed methods and ideas for what is now called IBMT. Realistic Mathematics 
Education (RME) is one of the most prominent, along with TDS.  
 
RME consists of ideas and principles for shaping the learning process. This 
chapter gives an overview of the main ideas in RME, aimed at teachers and 
educational designers. Ideas are illustrated by example tasks. In this text the 
theory of RME is build up from two central principles:  

(1) Mathematics is a human activity.  
(2) Meaningful mathematics is built from rich contexts. 

In the final sections we describe the connection between RME principles and 
Inquiry Based Mathematics Teaching (IBMT) and discuss RME ideas that can help 
with the design of IBMT scenarios. 
 

Structuring mathematics 
Mathematical knowledge can be structured to very high extent, while RME claims 
that the learning process requires a less formal approach. In the formal approach, 
one begins from axioms, postulates and definitions, and from there derives 
lemmas and theorems. Proofs establish the truth of these propositions within the 
axiomatic frame. The tradition of organizing and presenting mathematics results 
in this formal way stretches from Euclid (300 BC) to contemporary mathematics 
research. Mathematics as a building, where axioms are foundations and logic 
mortar, is impressive and effective. The formal presentation of results enables 
unambiguous academic communication. No wonder some have based 
mathematics education on it. In many countries, geometry was taught from the 
Elements of Euclid until the 1950’s. In the 1950’s and 1960’s, the New Math 
movement introduced set theory as a basis for secondary mathematics education.  

Mathematics as a human activity 
Should this highly structured body of mathematical knowledge be the leading 
inspiration on how we shape mathematics education? RME takes a different point 
of view. Its leading inspiration is that mathematics is a human activity. The 
organised body of mathematical knowledge is a product of this activity. For 
example, a good definition of a mathematical object is often the result of a long 
process of mathematical thoughts, ideas and attempts. RME underlines the 
importance of these processes that lead to the polished version of a mathematical 
object or result.  
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One could, in the very beginning of a chapter on logarithms, define the 
logarithmic function as the inverse of the exponential function. An RME based 
approach would rather begin with a task that shows the need for the concept. 
The exercise should allow the students to experience this necessity for a 
logarithmic function themselves. Here is a basic idea. 
 
 
Rogier puts 100 euro’s in the bank. The interest rate is 2%. Fill in the table. 

Amount 
(𝐴) 

100 ≈ 108,24 ≈ 129,36 ≈ 199,99 ≈ 507,24 

Years 
passed (𝑡) 

0     

 
Do you know a function to compute t from A? 
 
Of course the answer to the last question is likely to be “no”, but it is 
important for learners to ask this question and realise there is need for a new 
function. Learners are not used to this type of questions. For this reason the 
question might better be answered in a classroom discussion guided by the 
teacher. Learners may come up with (square) root functions and need 
guidance discovering why that is wrong. 

Anti-didactical inversion 
Presenting a learner with mathematics in its highly structured (axiomatic system 
based) version is an inversion. The learner is confronted with the result of an often 
long and difficult process of doing mathematics. If the learner is supposed to study 
mathematics this way, then the learning process is an inversion of the process 
that led to the mathematics. He will have to work hard (or to wait) to find out 
which questions gave rise to this mathematics and which problems were solved 
by it. The teacher could have consciously chosen for this approach, but RME 
claims it is not a didactical one: it is an anti-didactical inversion (Freudenthal, 
1991). 
 
Generally, a formal presentation of mathematics is rather inaccessible for novice 
learners. There are many didactical arguments against confronting a learner with 
mathematics in its highly structured polished version in the beginning of the 
learning process: 

 The natural process (being led by questions, problems, curiosity …) of 

arriving at the mathematics is not shown. Meaning and motivation is taken 

away from the learner. 

 Intuition that leads to the theory is remote from the learning process.  

 It is not clear what is solved, modelled or captured by the system (and 

what is not). 

 Heuristics that were needed to organise the mathematics in that way are 

neglected. 
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 The presentation can be too dense or sparse. An aspect of the mathematics 

may be very difficult to grasp but only be given little emphasis in a formal 

presentation. 

Many mathematicians, including mathematics teachers, will remember being 
confronted with the 𝜀, 𝛿-definition of limits in the first year of their studies, or 
even in high school. Why was this so inaccessible? It does not make sense to a 
learner if she has no understanding of problems with rigorous proof that 
emerged in Analysis at the beginning of the 19th century. What issue does it 
solve? Why such effort to prove something obvious? Why do other definitions 
not work? 
 
Similarly, stating the distributive law “𝑎 ∙ (𝑏 + 𝑐) = 𝑎 ∙ 𝑏 + 𝑎 ∙ 𝑐” just like that in 
secondary education, followed by exercises like “expand 5 ∙ (𝑎 + 2)”, is formally 
a correct order, but does not convey any meaning to the learner. Neither does 
it answer the question why this is a useful rule or skill. 

The role of realism in learning processes 
Obviously the (formal) meaning of mathematical objects and procedures is 
carefully and precisely described in formal presentations of mathematics. Since 
presentations with formal characteristics can be inaccessible and not didactical 
for a novice learner, how is one supposed to teach this meaning?    
 
A learning process is formed by a set of learning activities. One of the central ideas 
of RME is that the situations on which those activities are based should be real or 
realistic. The meaning of mathematical concepts and procedures is constructed 
from what is already meaningful to the learner, from what is real to the learner. 
 
What is meant by “real/realistic” in RME? Something is real for a learner, if it has 
some evident meaning to her, if she can grasp it. Something is real for a group of 
learners when it is common sense to them.  ‘Real” does not (necessarily) mean 
“modelled on reality”, for example modelled on situations from other disciplines, 
like physics or economics. Nor does a “realistic” learning situation necessarily 
mean that it is based on an everyday life experience.  And “real” is definitely not 
meant ontologically: what does and what does not exist. In fact, “meaningful 
mathematics” might be a better expression than “realistic mathematics”, but the 
latter happens to be the label, as it emerged in the previous century. Meaningful 
mathematics is learned by starting from what is already meaningful for the 
learner, in particular from meaningful contexts. As Freudenthal states it:  
 

How real [the] concepts are depends on the conceiver, and under given 
circumstances cognitive grasps can be more vigorous than manual and 
sensual ones, which are in fact always mixed up with cognition” and “(What 
is real is) mutually connected by actual, imagined and symbolised relations 
(….) which can extend from the nucleus of everyday life experience to the far 
frontiers of mathematical research, depending on the involvement of who is 
concerned. (Freudenthal, 1991, p.30). 
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The distributive laws can be introduced 
in a realistic  geometric context: 
Compute the area of the whole rectangle 
in two ways: 

(1) First the dark, then the light rectangle 
and then add the two 

(2) First compute the whole width and then 
multiply by the height 

(based on van den Broek et al., n.d.) 
 

 

Why is this a (more) realistic approach? The learner is assumed to be familiar 
with computing areas. The meaning of the equality emerges naturally as the 
outcomes of the two computations have to be equal. Meaning emerges from the 
task alone. The teacher has a role introducing the task, guiding the learners and 
reflecting on the task in classroom. He has to embed the task in a learning 
process in the right way. Later in this text follows more on RME views on this.  

 
 

Rich structures and rich contexts  
According to RME new meaning of mathematics for a learner is not drawn from 
the formal mathematical edifice, but mostly from what is real for the learner. The 
didactical situation should allow development of new knowledge from what is 
already meaningful. This means it should be rich in non-mathematical contexts 
and in mathematical structures. Here are possible ways in which a mathematical 
structure or a context can be rich: 
 

(1) it connects to various aspects of the learner’s common sense - the more 
connections made, the richer the structure; 

(2) its usefulness carries further mathematically than the situation where it is 
introduced; 

(3) it allows different approaches or solutions on different levels. 

We now proceed to illustrate these ways by concrete examples. 
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Point (1) is illustrated by the following ‘The tower and the bridge’ task. It was 
used in an experiment for introducing scale and geometrical reasoning in a 3D 
context (Goddijn, 1979).  
 
Below you see two photos of the same beautiful Dutch landscape with a tower 
and a bridge from different viewpoints. Which is higher: the tower or the 
bridge? 

 

 
Dutch school children ride their bikes everywhere, in particular to school. 
Surely, they will have seen bridges and towers like this in relative positions. 
With their smartphones they take photos (and edit them) daily. Moreover, 
everyone has an innate ability to imagine scenes from different perspectives. So 
this situation is realistic in many ways. And now they are required to think 
about it mathematically. They will have to introduce notions like viewpoints, 
projections, vision lines and scaling to discuss the situation, which is the goal of 
the task. 
 
The Figure below summarizes some of the mathematical aspects of the 
problem. The photos are depicted in a more correct relative scaling. 
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If one focuses on the formal presentation of mathematics as an inspiration for 
education, then it is a natural choice to begin with the mathematical objects with 
least structure. This way you build mathematical knowledge up from its 
fundamental notions. Geometry would begin from axioms on point and lines. 
Analysis could begin from sets, natural numbers to real numbers, then functions, 
etcetera. Such an approach was used during New Math in the 1960’s. But this is 
another incarnation of the anti-didactical inversion. Most of these structures are 
the end point of a process of abstraction, “impoverishing” and reorganisation of 
mathematical knowledge. According to RME it is more instructive for the learners 
to go through a process that achieves this themselves.  
  

Point (2) is illustrated again by the rectangle example above. It carries over 
nicely to exercises like: expand 3 ∙ (𝑥 + 𝑦 + 3), where the rectangle is divided 
in three instead of two. It also applies to (𝑎 + 7)(𝑏 + 8), where the rectangle is 
divided in four  
 

 
 

This, in contrast, is sometimes explained with another model that does not 
satisfy point (2). That second model is called a “parrot beak” and it is illustrated 
like this:  
 

(𝑎 + 7)(𝑏 + 8) = 𝑎 𝑏 + 8𝑎 + 7𝑏 + 56 
 
As soon as you multiplied two terms, you draw the line between them. If you 
have done it well, the beak appears. This model is a mnemonic technique and 
provides no understanding of what is happening. It does not satisfy (2), since 
you only get a beak expanding (𝑎 + 𝑐)(𝑏 + 𝑑), not with (𝑎 + 𝑐)(𝑏 + 𝑑 + 𝑒) or 
more complex expressions. 
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Point (3) can be illustrated by the following exercise. Just after substitution of 
numbers for variables is introduced one can proceed to solving equations.  
Find solutions for: 

2𝑥 = 8 
7 + 𝑥 = 15 

𝑥2 = 25 
𝑥 + 8 = 2𝑥 + 2 
(𝑥 + 2)2 = 16 

This list could be much longer; the more variety in equations, the richer the 
task. Without having previously learned any solution methods the success of 
learners will vary. They will also apply various types of reasoning. Through 
this exercise the teacher can find out what comes naturally to the learners and 
use this in a later stage, when formal solution methods are discussed. The 
teachers find out about the differences between the learners. 

Mathematising 
RME promotes mathematics as a human activity. Freudenthal calls one of main 
components of this activity mathematising:  

Mathematising is the entire organising activity of the mathematician, whether it 
affects mathematical content and expression, or more naive, intuitive, say lived 
experience, expressed in everyday language… (The goal is) offering non-
mathematical rich structures in order to familiarise the learner with discovering 
structure, structuring, impoverishing structures and mathematising. By this means 
he may discover the powerful poor structures in the context of the rich ones in the 
hope that, by this approach, they will also function in other (mathematical as well 
as non-mathematical) contexts. Starting with poor mathematical structures may 
mean that one will never reach the rich non-mathematical ones, which are in fact 
the proper goal. (Freudenthal, 1991, p.31 and p.41)   

Mathematising involves: axiomatising (creating an axiomatic mathematical 
system), formalising (the transition from an intuitive to a formal approach), 
schematising (forming meaningful networks of concepts and processes), 
algorithmising (the transition from solving a problem by hard work to solving it 
by routine), modelling (building schemes that represent, idealise, simplify other 
schemes), etcetera. 
One can distinguish two directions in mathematising: horizontal and vertical 
(Treffers, 1987). Horizontal mathematising is the transition of a problem or 
situation into a mathematical discourse. It enables the mathematical treatment or 
discussion of the situation. Vertical mathematising is mathematising within a 
mathematical discourse. 
As soon as one poses (and answers) questions about a situation in terms of 
quantities, distances, shape, symmetry, order, probability or other type of 
structures studied within mathematics, horizontal mathematising takes place. 
Both types of mathematising should be practiced by learners. If the horizontal 
part is neglected, then the learner loses the connection between mathematical 
knowledge and the situations where it is applied. If the vertical process is 
neglected the learner misses the opportunity to form the deep connections within 
mathematics, build the formal system and find a better understanding. 
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This task is part of a course material on discrete models for 16/17 year olds. 
The goal of the task is to exercise modelling skills with sequences, to practice 
sum sequences and to introduce the geometric series. It begins by introducing 
the famous paradox of Achilles and the turtle. Many students are familiar with 
it, but they can easily be brought into difficulties trying to disentangle it (e.g. in 
a classroom discussion). 
 
Achilles and the turtle are in a footrace. Since Achilles is faster, the turtle has a 
head start. Unfortunately, each time Achilles reaches the place the turtle was a 
moment before, the turtle has already progressed a bit. This way Achilles can 
never overtake the turtle and the turtle wins the race. What’s wrong with this 
reasoning? How can we solve the paradox by mathematical reasoning?  

 
 
The students are then challenged to model the situation (as a mathematical 
sequence). This naturally leads to questions on the role of time and distance as 
variables.  
 
A possible answer begins with some assumptions, say: the head start is 1, 
Achilles’ speed is 1 and the turtle’s is ½. Then the distance between at the times 
Achilles reaches the turtle’s previous position the is modelled by a sequence 
 

1,
1

2
,
1

4
,
1

8
, … 

 
The total distance covered by Achilles and the amount of time passed at each of 
those moments are modelled by a sequence 
 

1, 1
1

2
, 1

3

4
, 1

7

8
, … 

 
But how to deal with infinite sequences? If you add up an infinity of numbers is 
the outcome not infinity? This is the heart of the paradox! The answer lies in 
the geometric series, which is a major learning goal of the task.  
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In a follow up exercise students  study the picture: 
 

  
 
Informal reasoning with this picture gives students a way to compute the 
geometric series solving the paradox.  
 
Then follows a process of vertical mathematising. the student is challenged to 
find a similar result for the  picture on the right and then to formalise and 
generalise what is represented visually in these pictures to 

1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ =
1

1 − 𝑥
. 

Finding the expression 
1

1−𝑥
 is a big challenge.  

After applying this result to other intriguing situations, like 0,9999 … = 1 (a 
nice example of a mathematical context), the students’ interest in finding a 
proof should have been stimulated. In the proof pseudo-formal techniques are 
used 
 
(1 − 𝑥)(1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ ) = 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ − 𝑥 − 𝑥2 − 𝑥3 + ⋯ = 1. 
 
Later this can be further formalised in notation by introducing limits and ∑-
notation. 
 
This sketch of a learning scenario shows examples of modelling and 
formalising, starting from the rich context of a famous paradox and accessible 
pictures. Note the order of the activities; the learner is enabled to arrive at the 
more formal result through studying the concrete contexts. 

Horizontal mathematising from rich contexts to tie the bonds with 
reality 
RME is very concerned with the bonds of mathematics with reality. As 
Freudenthal (1991, p.81) puts it:  

The world is noisy; mathematising the world means looking for essentials, sensing 
the message within the noise. This, too, has to be learned, that is, reinvented by the 
learner, and the earlier the better; once the learner has fully been indoctrinated by 
ready-made schemes and algorithms it may be too late.  
 

Next to “mathematics as a human activity”, “bonds with reality” is one of the main 
focusses of RME. To stimulate those bonds learning activities should involve a 
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sufficiently (non-mathematical) rich context. Earlier in the chapter we discussed 
rich contexts. Let us elaborate on this with a few suggestions. Each suggestion 
should, of course, meet the criteria for richness mentioned before.  

a) A location. For example, a stockroom or a music festival 

b) A story, such as the paradox of Achilles and the turtle described above. 

c) A human activity. For example designing a house, or flying a plane. 

d) News or a historical event. For example, statistical claims in a newspaper. 

The following exercise comes from De Wageningse Methode (van den Broek et 
al., n.d.). It is part of a chapter about matrices. A large part of the chapter 
revolves around the rich context of a car sales company. It has a headquarters 
and a branch. It sells cars of type A, B and C. The car stock is represented by a 
matrix 𝑆 

𝐴 𝐵 𝐶
𝐻𝑒𝑎𝑑𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑠

𝐵𝑟𝑎𝑛𝑐ℎ
(

15 13 7
3 4 11

)
 

 
In previous exercises learners have been adding matrices to adjust to stock. 
Now a value matrix  𝑉  is introduced (in thousands of Euros) 

      𝑠𝑎𝑙𝑒 𝑐𝑜𝑠𝑡 𝑝𝑟𝑜𝑓𝑖𝑡
𝐴
𝐵
𝐶

(
12   11    1
30   28    2
20  17    3

)
 

 
The total sale value of the cars in the headquarters is  

15 ∙ 12 + 13 ∙ 30 + 7 ∙ 20 = 710 (thousand Euros). 
 

a) Compute the total sale value of the cars in the branch. 
b) Compute the total cost value of the cars in the headquarters. And in the branch. 
c) Compute the total profit value of the cars in the headquarters. And in the branch. 
d) Use the totals you found in a), b) and c) to fill in a totals matrix 𝑇 

        𝑠𝑎𝑙𝑒 𝑐𝑜𝑠𝑡 𝑝𝑟𝑜𝑓𝑖𝑡
𝐻𝑒𝑎𝑑𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑠

𝐵𝑟𝑎𝑛𝑐ℎ
(

   ∙      ∙      ∙  
∙ ∙   ∙  )

 

 
Then follows an explanation that what one has done is actually a kind of 
multiplication for matrices 𝑆 ∙ 𝑉 = 𝑇 , and 𝑇 is defined as the product matrix. 
The benefit of this approach is that the operations performed for matrix 
multiplication come naturally and in a meaningful way; thanks to a well-chosen 
context. 

 

Emergent models 
So how does a learner arrive at more formal mathematical knowledge in RME? In 
work of Streefland (1985), Treffers (1987) and, later, Gravemeijer (1994), a 
special role is given to models as they arise in the mind of learners. In their work, 
models are mental schemes of concepts and processes related to a situation. From 
horizontal mathematising a model of a situation emerges. This model represents 
the learner’s informal mathematical activity with respect to the situation. It gives 
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meaning to the situation for a learner. From here a process of vertical 
mathematising can take place: building a (more abstract) mathematical object 
from a concept, or an algorithm from a process. The new model is a more formal 
one. After one or more of such steps it is not a model of a specific situation, but a 
model for a class of situations enabling mathematical activity without reference 
to the situation that gave rise to the model. However, if needed, one could give 
meaning to the model by linking through the intermediate models all the way 
back to the original one. This is one of the reasons why RME prefers to work with 
models that carry further than the situation where they arise (see point (2) about 
rich exercises).  
 

The gradual emergence of a formal model may stretch over a long period of 
education. As an example let’s look at the emergence of the concept of a function 
(Doorman, Drijvers, Gravemeijer, Boon and Reed 2012). We take as a starting 
point that the learner is familiar with the concept of a variable, including 
substitution of a value for a variable. Exercise for 12 year olds (adapted from 
De Wageningse Methode, cf. van den Broek et al., n.d.): 
 
Look at the scheme on the right.  
Make the table with the numbers 1, 
2, 3, 4, 5 and 10.  
 
Sam finds an outcome of 10. What 
was his starting number?  
 
And with 343? 
 

 

This informal activity will later progress into the use of formulas to represent 
the arrow scheme. Learners will work with such computational schemes and 
formulas and they will gradually form a reality for the learner. 
 
At some point new basic computations are added: the sine, cosine and tangent, 
denoted sin(𝑥) , etc. Learners do not learn how the computation is 
accomplished (in general), but just what their geometric meaning is. This is an 
important shift of point of view. The next step is that in analogy a new notation 
enters: 𝑓(𝑥) , where 𝑓  represents a computational scheme. At this point the 
computational scheme itself becomes an object. Learners will have to study 
properties of the object, like the domain or derivative. But the concept of 
function is introduced based on a transformation of models: a model for the 
concept of function, based on models of functions, and not based on a definition. 
An actual formal definition of a function is reached from a different path 
altogether: set theory! 
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Guided reinvention 
Horizontal mathematising activity opens up a situation, or a class of situations, to 
mathematical discourse. Through vertical mathematising, models of informal 
mathematical activity are gradually transformed into models representing formal 
mathematical knowledge. One could say that in this way the formal mathematics 
is reinvented by the learner. This process can in many cases not be the same as the 
original invention. The way a professional mathematician arrived at a result may 
use motivation and knowledge not available to a learner. The challenge for the 
RME-teacher is to facilitate a process that is suitable for the learner. The process 
has to be guided.  As written in Freudenthal (1991) “Inventions, as understood 
here, are steps in learning processes, which is accounted for by the “re” in 
reinvention, while the instructional environment of the learning process is 
pointed to by the adjective “guided””. In addition to the previous discussion one 
can add the following arguments in favour of guided reinvention (Freudental 
1991):  

1. Knowledge and ability, when acquired by one’s own activity, stick better 

and are more readily available than when imposed by others. 

2. Discovery can be enjoyable and so learning by reinvention may be 

motivating. 

3. It fosters the experience of mathematics as a human activity. 

4. It ensures the mathematical approach fits the level of the learner. 

The reinvention principle should be put in the perspective of the central claim of 
RME with which we started this discussion: that mathematics education is not just 
about the body of mathematical knowledge, but also about learning to 
mathematise. Therefore the process of reinvention is valued as much as the 
outcome. 

Guiding towards inventions 
How to guide learners towards their reinventions? “Guiding means striking a 
delicate balance between the force of teaching and the freedom of learning” 
(Freudenthal 1991). Obviously the guided activities should promote horizontal 
and vertical mathematising. The aim should be that the learners themselves 
produce solutions to set problems, and perhaps even produce new problems. 
The teacher’s instruction should promote discussions between learners 
themselves and between learners and the teacher. Discussions among learners 
allow them to test, focus and reformulate ideas without a teacher directing them 
to a desired outcome. Not all learners will mathematise and invent at the same 
speed. Discussions help learners to align their ideas.  
If the teacher is involved in discussion, then learners benefit from his attempts to 
go along with their reasoning to help them see where it might lead. The reason for 
this is that learners own approaches are based on what is meaningful for them. If 
the teacher can guide those methods to an acceptable solution, then the odds of 
the learner understanding the solution increase. 
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A learner’s own invention (such as a concept, algorithm, model, or a way to solve 
-a problem) may not be the most efficient or beautiful one. It may be different 
from the one the teacher had in mind as a desired learning outcome. At the end of 
a reinvention activity the teacher could try to formulate a joint outcome in a 
classroom discussion. The teacher should take care to connect the outcome to the 
learners’ contributions.  

RME and IBMT 
Where is the common ground between RME and IBMT? A central concept of IBMT 
is inquiry: a process similar to how mathematicians and scientists work when 
confronted by a new phenomenon.  
 

Many daily-life phenomena can be described, investigated and understood with the 
help of mathematics in combination with science or common sense, and are 
therefore a rich source for IBMT2... (Artigue and Blomhøj, 2013) 

 

RME and IBMT have some principles in common. Both theories describe how 
daily-life situations form a rich source for learning. They advocate knowledge 
construction through methods inspired by science and knowledge construction: 

                                                        
2 In this booklet we use the term IBMT, where Artigue and Blomhøj use IBME.  

This exercise adapted from De Wageningse Methode (van den Broek et al., n.d.) 
aims at a reinvention of the completing the square method. In the right picture 
the L-shape is completed to a square. 
 

 
 

a) Write an expression in 𝑥 for the area of the L-shape in the left picture. 

b) What is the area of the grey square? 

c) What is the length of the side of the big square? 

d) Explain how (a) and (b) lead to the equality 𝑥2 + 6𝑥 = (𝑥 + 3)2 − 9. 

e) Check this equality by expanding the brackets in the right expression. 

f) Sketch an L-shape with area 𝑥2 + 10𝑥. 

g) What equality can you derive from this L-shape? 

This exercise is repeated with different numbers (introducing fractions as 
well), but leaving the choice of drawing an L-shape to the learner. The 
important observation here is that the reinvention of the algorithm is left to 
the learner. The learner is supposed to do the algorithmising. 
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inquiry, discovery or (re)invention. Both IBMT and RME describe these processes 
as social: learners working together to rediscover and reconstruct knowledge. 
RME emphasizes that reinvention will be different from invention, since the 
knowledge that forms the starting point for a specialized researcher and for a 
novice learner are very different.   
In addition to traditional roles, the teacher acquires a new one in RME and IBMT: 
he is a facilitator and a guide of inquiry and mathematising. The learners and their 
ideas play the central role. The teacher helps to formalize the informal approaches 
of the learners, as discussed before.  
RME and IBMT view the proficiency in inquiring and mathematising themselves 
as learning goals, in addition to domain knowledge. This is a significant shift away 
from exclusively domain knowledge centered approaches.  

RME-structure for IBMT-modules 
So far we have discussed various aspects of RME, with several example tasks. To 
conclude we sketch an outline how to string tasks together into a learning 
trajectory, for example a module.  

1. An introduction: present a context with a relatively open problem 

(possibly for the students to discover or formulate). This problem is going 

to be overarching for the entire module. It will be approached in various 

mathematical ways. 

2. A phase of horizontal mathematising: mathematical language is 

introduced to discuss the situation. The learners form a first informal 

model of the situation. 

3. A phase of vertical mathematising: the mathematics is involved in the 

problem is further developed. The model is made more abstract, more 

general. 

4. Conclusion and reflection: the learner reflects on the whole process, 

integrates ideas, makes acquired metacognitive skills explicit, the learners 

share their findings, the teacher guides and highlights main learning 

points.  

In each phase there are elements of inquiry: the discovery and/or formulation of 
the problem, forming a first informal model, abstracting, sharing findings. The 
challenges involved in applying these ideas and other principles to design IBMT 
based modules are addressed in other MERIA project publications (see 
http://www.meria-project.eu/). 
 
 
 
 

  

http://www.meria-project.eu/
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Appendix. An outline of Key References: suggestions for 
further reading related to the MERIA project. 
 
Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education 
in mathematics. ZDM – The International Journal on Mathematics Education, 
45, (6), pp. 797-810. 
The paper argues how IBE/IBME invites students to “work in ways similar to how 
mathematicians and scientists work”. They start by presenting Dewey as a 
philosopher who strived to overcome the distinction between knowing and doing 
by viewing human behavior as reflective inquiry. They further list by whom 
Dewey was inspired. They list elements of inquiry practice which seems crucial: 
reflective inquiry mixes induction and deduction, process concerning daily life 
and scientific activity, hands-on activities and that IBE should develop the 
students’ habits of mind in the direction of those underlying inquiry processes. 
The descriptions of inquiry from the PRIMAS and Fibonacci projects are described 
and how they relate to the idea of progressive development of “big ideas”. The 
migration of IBE to mathematics education is argued as relating to Polya’s “How 
to solve it” and more recent theories and approaches to the teaching of 
mathematics. Hereafter, a short presentation of these theories and approaches 
are given and how they relate to IBE. The approaches treated are: The problem 
solving tradition, the Theory of Didactical Situations, Realistic Mathematics 
Education, Modelling perspectives (from Mathematical Competence Theory), the 
Anthropological Theory of Didactics and the Dialogical and critical approaches. 
While summing up the authors argue that teachers need to have experience and 
to exercise inquiry in mathematics themselves in order to teach inquiry based and 
it is suggested to differ between “inquiry by teachers and inquiry in teaching” and 
the latter seem to require considerable collaboration among teachers for IBME to 
be realized in classrooms. As concluding remark the authors list ten concerns, 
which should be taken in to consideration when engaging in IBME and which are 
addressed with different weight on each concern when teaching is designed based 
on the existing approaches to mathematics teaching presented earlier in the 
paper.  
 
Artigue, M. & Baptist, P. (2012). Inquiry in Mathematics Education , 
Resources for Implementing Inquiry in Science and in Mathematics at School. 
Retrieved from http://www.fibonacci-project.eu 
This part of the booklet from the Fibonacci project describes previous and present 
attempts to teach mathematics in an inquiry based manner. The Fibonacci project 
continues some of the ideas from the German SINUS, which defined features 
involved in inquiry processes in mathematics teaching. The first part of the 
booklet section points out what approaches to math education known from the 
literature capture IBME features. Inquiry in science often draws on already 
sensed experiences, which can be further studied in cyclic processes, which do 
not apply to the case of mathematics. Here the cumulative nature of the discipline 
is a challenge.  Hence the design task is different if we want to ensure that students 
reach a certain learning goal, which again links to already developed knowledge 



 

66 
 

within the students and form the basis for more formal proving of the concrete 
ideas developed during the inquiry activity. In this context ICT or CAS-tools offers 
special opportunities and challenges when designing IBME activities – examples 
are provided of different ICT designs. In the first half it is briefly argued what 
elements: Modelling, RME, ATD, TDS and critical approaches and problem-solving 
can offer IBME. But also the obstacles one might encounter when implementing it 
in school systems is presented in this booklet section.  
In the second part a more practical (teacher) perspective is given on the IBME. 
From a characterization of standard teaching it is pointed out, how teaching 
should be altered: what should the teacher do less and more of? What actions 
should the students engage in and how do teachers make them do that? It is 
argued how these actions support the students’ development of problem-solving 
and metacognitive competences. Finally examples are given on IBME tasks with 
and without computers. 
 
Artigue, M., Dillon, J., Harlen, W., & Léna, P. (2012). Learning through 
inquiry, Re-sources for Implementing Inquiry in Science and in Mathematics 
at School. Retrieved from http://www.fibonacci-project.eu/resources 
More general on the ideas of the Fibonacci project not restricted to mathematics 
 
Artigue, M., & Houdement, C. (2007). Problem solving in France: 
didactic and curricular perspectives. ZDM – The International Journal on 
Mathematics Education, 39, 365–382 
The paper gives an overview of how problem solving can be regarded and 
approached from the point of view of TDS, ATD and “conceptual fields”. A few 
examples are given, of how problem solving is articulated in curricula at different 
levels of mathematics. Most of the results presented relate to the change of focus 
with respect to problem solving in curricular reforms from 1945 to 2002. Changes 
in curricular reflect the changed role of primary education. It is described through 
examples how didactical research has influenced the curricular changes with 
respect to problem solving through design centers as IREM, which provide the 
support of in-service teachers to realize the intended changes. However, there are 
still problems when studying the realized curriculum in the classrooms, where 
teachers find definitions of a problem blurred and they have difficulties 
navigating in open processes and tend to put equal value to different answers of 
varying quality. It is suggested that stronger links between research and practice 
as well as teacher training will improve the realized curriculum.  
 
Brousseau, G. (1997). Theory of didactical situations in mathematics: 
Didactique des mathématiques, 1970-1990. Dordrecht: Kluwer Academic 
Publishers.  
The book presents most of the Theory of Didactical Situations, which has been 
developed by Guy Brousseau, and further developed together with his research 
group. TDS is introduced through the example of “The race to 20”. The analogy 
between learning and winning a game becomes clear in the introduction and a 
first presentation of the phases of action, formulation and validation is given. 
Chapter 1 starts by a presentation of what didactique is in French research, 
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concerning the objects and phenomena which are studied. Among the phenomena 
are some unintended effects of teaching: Topaze effect, Jourdain effect, 
metacognitive shifts and improper use of analogies. Further, the notions of 
didactical situation, adidactical situation and the didactical contract are 
presented. Examples are given on devolution of an adidactical situation and 
further paradoxes regarding the didactical contract are discussed. The paradoxes 
relates to students adjustment to situations and the learning potentials of doing 
that. In the last part emphasis is put on how the phases and situations can be 
modelled through the design of milieu, which leads to formulation of intended 
learning if the students adapt to the milieu of the situation.  
Chapter 2 continues the design element by presenting the notion of 
epistemological obstacles, problem and what didactical engineering is from the 
point of view of TDS. The chapter relates to problem situations and Brousseau’s 
study regarding the teaching of decimals. Further a distinction between what 
obstacles can be dealt with in classrooms and what obstacles are external to the 
classroom is given. 
Chapter 3 provides an analysis of the possible outcomes of the teaching of 
decimals in French primary school from 1960s and 1970s based on previous 
curricular and approaches to teaching. This is continued in chapter 4, where 
conclusions on the mathematical, epistemological ad the didactical analysis are 
drawn. Based on these design examples other examples are presented and 
discussed: the pantograph and the scaling of drawings, the puzzle task moving 
from an additive to multiplicative domain, decimal numbers and the rational 
numbers. Next, the analysis of a situation is presented, which covers the design of 
a situation where the thickness of a piece of paper is determined and the analogy 
of the learning situation with a (didactical) game. 
Chapter 5 elaborates on the notion of didactical contract both in relation to design 
issues and in relation to the effects on students learning. It relates to the phases 
of the didactical game with an emphasis on the knowledge to be taught in the 
designed situation. 
The last chapter 6 addresses the relevance of TDS research to teacher practice 
including techniques for teachers and how research knowledge can become 
reality in the classroom practice.    
 
Burkhardt, H., & Bell, A. (2007). Problem solving in the United Kingdom. 
ZDM - The International Journal on Mathematics Education, 39, 395–403. 
The paper gives a historic overview of political decisions made throughout the 
last 100 years regarding teaching in mathematics. It is problematized that in 
recent years policy makers seem to act based on their own experiences with 
respect to what mathematics teaching is and should be rather than relying on 
research knowledge. Hence, inquiry approaches to the teaching of mathematics is 
not emphasizes or supported in the British school system. 
 
 
 
Chevallard, Y. (2015). Teaching Mathematics in tomorrow’s society: a case 
for an oncoming counter paradigm. In The Proceedings of the 12th 
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International Congress on Mathematical Education (pp. 173-187). Springer 
International Publishing. 
This is a survey paper, introducing elements of the Anthropological Theory of the 
Didactic (ATD), another French theory of didactics. Ordinary classroom teaching 
presenting and explaining procedures or formulas is characterized as the 
paradigm of visiting works. The paper argues that mathematics teaching should 
head towards a new (counter)paradigm: Questioning the world. It is proposed 
that teaching should be based on open questions, which students answer by 
engaging in the study of existing resources and employing newly gained and 
existing knowledge to answer the open question. In this process students are 
supposed to derive new questions from the given one. The design tool for this 
kind of teaching is called Study and Research Paths (SRP) and is pointed out by 
other researchers (including papers in this list) to be a promising model for IBME. 
  
Cobb, P., Wood, T.,  Yackel,  E.,  &  McNeal,  B.  (1992).  Characteristics of 
Classroom Mathematics  Traditions: An  Interactional  Analysis. American 
Educational Research Journal, 29 (3), 573–604. 
The authors are analyzing two examples of teaching place value numeration in US 
grade two and three. They introduce a number of notions from American 
mathematics education literature to analyze the two teaching situations. They 
identify the situations as school mathematics and inquiry mathematics 
respectively. They emphasise the different role played by instructions and the 
verification of students’ answers. They mention the work and some notions of 
Brousseau’s TDS, however they do not wish to analyse the two teaching situations 
using the notion of didactical situations. They conclude that “In addition, we 
contend that cognitive models which document students' construction of 
increasingly sophisticated mathematical objects are essential to analyses of their 
activity as they participate in the interactive constitution of an inquiry 
mathematics tradition.” The paper show an attempt to conceptualise how inquiry 
like mathematics education can be analysed and compared to traditional 
approaches. Most of the findings can be related to the notion of didactical contract 
from TDS, but it is not done in the paper.  
 
Dewey, J. (1902). The Child and the Curriculum. Chicago: University of 
Chicago Press. 
He discusses how educational systems are arranged in logical structures. 
However the logic is often the one produced by grownups and is the product of 
years of dealing with the knowledge to be taught. This might lead to challenges 
for child and its’ learning since it might not fit with the child’s experiences. On the 
contrary teaching should revolve around children’s actions and it is concluded: 
“Action is response; it is adaptation, adjustment. There is no such thing as sheer 
self-activity possible—because all activity takes place in a medium, in a situation, 
and with reference to its conditions” 
 
Dewey,J. (1929). The Sources of a science of education 
Chapter 1: Education as a science. He argues for the need of regarding education 
as a science, where we share knowledge in a scientific way. Some teachers have a 
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talent for teaching, but if we do not study, what this talent is made of, we cannot 
share the practice or ideas on teaching. But there is a danger of knowledge 
gathered as regarding education as science, will be misused as quick fixes by 
persons in educational systems 
Chapter 2: Borrowed techniques insufficient. It is argued that techniques cannot 
be borrowed from natural sciences. And at this time of history, it is unclear what 
and how to measure objects in the field of educational research. 
Chapter 3: Laws vs. Rules. 
Discusses how school systems and knowledge is arranged and why this might fail 
in teaching and learning for all and the free play of thought, where the latter might 
actually be central for learning.  
   
 
Dewey, J. (1938). Logic: The theory of inquiry. New York: Henry Holt and 
Company, Inc. 
The book discusses inquiry from different perspectives: common sense and 
scientific inquiry, the structure of inquiry and construction of knowledge, 
working hypotheses etc. The main emphasis is put on inquiry in science. A chapter 
is devoted to the mathematical discourse of inquiry, where it is concluded that: 
“The considerations here adduced have an obvious bearing upon the nature of 
test and verification (See ante, p. 157). They prove that in the practice of inquiry 
verification of an idea or theory is not a matter of finding an existence which 
answers to the demands of the idea or theory, but is a matter of the systematic 
ordering of a complex set of data by means of the idea or theory as an 
instrumentality.” Hence it is the generality, which can be drawn from the concrete 
experiment or experience, which is interesting. Different notions and concepts 
from mathematics (e.g. isomorphic, a relation etc.) are discussed in the context of 
inquiry and in mathematics and to what extend they do mean the same. 
 
Dorier, J. & Garcia, F.J. (2013). Challenges and opportunities for the 
implementation of inquiry-based learning in day-to-day teaching. ZDM - The 
International Journal on Mathematics Education, 45(6).  
The paper argues about the conditions and constraints which might favour, or on 
the contrary hinder, a large-scale implementation of inquiry-based mathematics 
and science education, on the basis of our work within the PRIMAS project in 12 
European countries. The model of the educational system provided by the 
Chevallard’s anthropological theory of didactics (ATD) as a systemic institutional 
perspective helped in structuring the analysis of conditions and constraints of the 
systems in these countries. It is a complement to the approach through the 
analysis of teachers’ beliefs and practices (Engeln et al. in ZDM Int J Math Educ 
45(6) 2013). In the approach, teachers are actors of institutions, representing 
some disciplines, embedded in a school system, sharing some common 
pedagogical issues, are considered in relation to society. The analysis is organized 
according to four levels of institutional organization that co-determine both 
content and didactical aspects in the teaching of mathematics and sciences: 
society, school, pedagogy and disciplinary.  
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Drobnič Vidic, A. (2011). Impact of Problem-based Statistics Course in 
Engineering on Students’ Problem Solving. International Journal of 
Engineering Education 27(4):885-896. 
Abstract. In this comparative study, we examined the level of basic discipline 
knowledge and problem-solving abilities in problem-based learning (PBL), 
incorporated into a traditional curriculum in an introductory statistics course. 
Progressively less structured, less familiar and more open problems were 
presented to engineering students. Engineering problems triggered the learning 
of new statistical contents and activated small group problem solving. Students 
as a group determined the learning goals, individually searched for information, 
and together analysed the information collected. Such a problem-solving process 
with real-world problems is often seen as unstructured and time-consuming. An 
experiment was carried out to find out whether this approach yields adequate 
basic statistical knowledge and improves problem solving. Two randomised 
groups of students from the same engineering programme were compared: one 
group used PBL and the other followed the traditional method of instruction. The 
results of statistical analysis showed that engineering students with the PBL 
approach acquired sufficient basic statistical knowledge and were better able to 
solve statistical problems from the field of engineering than the students who 
followed the traditional way of instruction. Some characteristics of the 
implementation of the course are discussed, as well as some limitations of the 
study. 
 
Drobnič Vidic, A. (2015). First-year students' beliefs about context problems 
in mathematics in university science programmes. International Journal of 
Science and Mathematics Education, 13 (5), pp. 1161–1187. 
Abstract: Mathematics-related beliefs play an important role in the willingness to 
engage in academic activities in mathematics education. Such beliefs might not be 
consistent with the beliefs students hold about context problems that require 
sufficient mathematical knowledge and the application of such knowledge to 
various real-life situations. This study was designed to examine differences 
between students' mathematics-related beliefs and beliefs about context 
problems. The variations in these beliefs could explain the different amounts of 
effort students put into solving context problems on one hand and in solving 
typical mathematical tasks on the other. The study included 261 first-year 
students: students in one group were enrolled in academically more demanding 
study programmes (n = 162), while students in the other group (n = 99) were 
enrolled in less demanding study programmes. The results revealed significant 
differences in beliefs between the two groups. A detailed analysis indicates the 
factors which need to be emphasised when designing problem-based 
mathematics education to promote the successful problem solving of context 
problems. 
  
Drobnič Vidic, A. (2016). Using a Problem-Based Leaning Approach to 
Incorporate Safety Engineering into Fundamental Subjects. Journal of 
Professional Issues in Engineering Education and Practice.142 (2).  
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Abstract. Safety is considered as an important area of engineering education, but 
it is often not addressed adequately in an engineering curriculum. Contents of 
safety engineering were incorporated in an introductory statistics course through 
problem-based learning (PBL) approach. Novices were learning statistical 
contents via PBL problems from the field of safety engineering. They were divided 
in two groups according to the partial assessment option they chose: the group 
with classical assessment and the group with assessment of an independent PBL 
engineering problem that was designed in accordance to the campaign 
coordinated by the European Agency for Safety and Health at Work. In the 
problem, students were analyzing the quality of installation of fire extinguishers 
in more than 200 buildings, as well as their maintenance. The aim of our study 
was to find out if the assessment of such a problem can be used to assess students’ 
holistic statistical knowledge, if students can get new insights in the field of safety 
engineering, and if such assessment suits the ABET criteria. Students’ 
questionnaire also gave us information on the students’ perception of the 
difficulty of PBL approach in both assessment options. 
 
 
Drobnič Vidic, A. (2017). Teachers’ Beliefs about STEM Education Based on 
Realisation of the “Energy as a Value” Project in the Slovenian School 
System. International journal of engineering education (in press).  
Abstract. The cross-curricular project Energy as a Value described in this study 
involved almost all subjects in the K-12 curriculum of the so-called technical 
gymnasium. It became the framework for an effective Science, Technology, 
Engineering and Mathematics (STEM) education. Although the project offered 
interdisciplinary connection of all STEM subjects, promoted problem-based 
learning and pointed out to applications of subjects’ contents to engineering 
profession it was not added up as a successful one. Teachers’ satisfaction was 
questionable at the end of the four-year project time. Teachers were not initiators 
for a new project. The Engineering Education Beliefs and Expectations Instrument 
for STEM education is used in order to find the reasons for such an ambitious 
project not being carried out again. The instrument documents teachers’ beliefs 
and expectations about pre-college engineering instruction, college preparation, 
and career success in engineering, and to compare teachers’ views. It is applied to 
teachers of technical gymnasiums in Slovenia that teach STEM subjects in order 
to find out if there are differences between beliefs of teachers that carried out the 
Energy as a Value project and teachers from other technical gymnasiums, as well 
as differences between beliefs of mathematics / science teachers and technology-
based / engineering teachers. The results of statistical analyses give answers 
about obstacles that teachers who carried out the ambitious STEM education in a 
particular school system might be confronted with. 
Keywords: STEM education; teachers’ beliefs; K-12 curriculum; interdisciplinary 
engineering project; project-based learning.  
 
 
Elia, I., Gagatsis, A., Panaoura, A., Zachariades, T., & Zoulinaki, F. (2009). 
Geometric and Algebraic Approaches in the Concept of "Limit" and the 
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Impact of the "Didactic Contract". International  Journal  of  Science  and  
Mathematics  Education, 7 (4), 765–790. 
This paper reports on a study with a large number of upper secondary students’ 
engagement in problems regarding the concept of limit, where the students were 
supposed to change freely from the algebraic to the geometric domain and back 
again. To what extend students succeeded in the none-routine problems 
requiring a change of domain depended on the degree by which the students were 
bound by a traditional didactical contract. 
 
Ellerton, N. (2013). Engaging pre-service middle-school teacher-education 
students in mathematical problem posing: Development of an active 
learning framework. Educational Studies in Mathematics, 83, 1, pp. 87-101. 
The paper starts arguing for the importance of being able to question the content, 
which you are supposed to learn and learn, to question existing knowledge 
requires creativity and imagination and is how advances are made in science. 
Therefor this should be promoted in the teaching. The paper sketches some 
designs created by pre-service lower secondary teachers have designed teaching 
activities engaging students in posing problems.  
  
Engeln,  K.,  Euler,  M.,  &  Maaß,  K.  (2013).  Inquiry-based  learning  in  
mathematics  and science:  a  comparative  baseline  study  of  teachers  
beliefs  and  practices  across  12 European  countries. ZDM – The  
International  Journal  on  Mathematics  Education. Advance online 
publication. http://link.springer.com/journal/11858 
The paper presents some of the results of a questionnaire answered by the 
teachers engaged in the PRIMAS project. It shows that teacher in general have a 
positive attitude towards IBL, but also that they consider a lack of resources as a 
major obstacle to implementing IBL. Also national restrictions in the educational 
system are pointed out as challenging. By contrast, classroom management is not 
regarded as a major problem by the teachers. 
 
Euler, M. (2011). PRIMAS survey report on inquiry-based learning and 
teaching in Europe 
The PRIMAS project showed that in most EU countries at least some teachers in 
mathematics and science have experience with Inquiry Based Learning (IBL), but 
there are differences in the interpretation of the notion, hence an IBL lesson can 
appear very different in one country compared to another. It is suggested that 
initiatives supporting the implementation of IBL is initiated around teachers, who 
have some experience already and an interest in pedagogical or didactical issues. 
The project identified three main factors making the implementation of IBL 
problematic: classroom management, resources and restrictions from the 
educational system in specific countries.   
 
García, F. J. (2013) PRIMAS guide for professional development providers. 
The report lists a number of concrete initiatives for how to teach in-service 
teachers to use IBL, the theoretical approaches captures modeling, Lesson Study 
and to fit IBL with local requirements for in-service teacher training. The modules 
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of the PRIMAS in-service teacher training covered the following topics: student-
led inquiry, tackling unstructured problems, learning concepts through inquiry, 
asking questions that promote IBL, students working collaboratively, building on 
what students already know, self and peer assessment. 
 
Godino, J.D., Batanero, C., Canadas, G., Contreras, J.M. Linking inquiry and 
transmission in teaching and learning mathematics. In K. Krainer & N. 
Vondrova (Eds.). Proceeding of the Ninth Congress of the European Society for 
Research in Mathematics Education, 2015, Prague, Czech Republic. pp.2642-
2648. 
The paper describes different theories that assume that learning mathematics 
should be based on constructivist methods where students inquire problem-
situations and assign a facilitator role to the teacher (RME, TDS), and contrast 
them to the theories that advocate for a more central role to the teacher, involving 
explicit transmission of knowledge and students’ active reception. The authors 
hold the view that mathematics learning optimization requires adopting an 
intermediate position between these two extremes models. 
 
Gravemeijer, K. & Terwel, J. (2000). Hans Freudenthal: a mathematician on 
didactics and curriculum theory. Journal of Curriculum Studies, 32, 6, pp. 
777-796. 
The authors give an account of the main contributions to mathematics education 
by Hans Freudenthal, who regarded mathematics as a human activity. He 
continued the idea of guided reinvention (also known from Dewey’s work), which 
questioned the formation of curricula at the time. He wanted to promote the idea 
of putting processes rather than fixed pieces of content as a central element of 
what students should learn. As a result mathematics teaching should be based on 
modeling problems where students mathematize matter from reality, but with no 
clear intra- and extra mathematical reality. Later a difference between vertical 
and horizontal mathematization was introduced. Freudenthal criticized the role 
played by generic theories on pedagogy or learning theories in mathematical 
education research. Rather he proposed the approach of Realistic Mathematics 
Education (RME), which is a phenomenological approach to mathematics 
teaching. 
 
Gueudet, G., & Trouche, L. (2011). Mathematics teacher education advanced 
methods: an example in dynamic geometry. ZDM – The International Journal 
on Mathematics Education, 43 (3), 399–411. 
An example of how in-service teacher training can support teachers in the design 
or development of inquiry based teaching employing a dynamic geometry 
computer program (ICT based IBME). The teachers in this study are teaching at 
upper secondary level and the theoretical approach is the very recent theory of 
documentational genesis. 
 
Van den Heuvel-Panhuizen, M. (2000). Mathematics education in the 
Netherlands: A guided tour. Freudenthal Institute Cd-rom for ICME9. Utrecht: 
Utrecht University.  
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This is a survey paper, which introduces the central constructs and notions from 
RME and Dutch didactics tradition, starting with contributions by Hans 
Freudenthal, towards more recent developments. Three primary school examples 
are provided in the text.  
 
Hersant,  M.,  &  Perrin-Glorian,  M.-J.  (2005).  Characterization  of  an  
ordinary  teaching practice  with  the  help  of  the theory  of  didactic  
situations. Educational Studies in Mathematics, 59(13), 113–151. 
The paper presents some of the challenges when teaching is designed to offer 
students a larger degree of initiative in the classroom and how that increases the 
uncertainty of the teacher. By employing the notions from TDS the authors 
analyse two case studies of teaching, where the authors have had no influence on 
teaching design or the conduct of the teaching. Based on this the authors discuss 
the challenges and possibilities for bringing constructivist approaches to teaching 
into the classroom.  
 
Kilpatrick, J. (2014). History of Research in Mathematics Education. 
Encyclopedia of Mathematics Education, pp. 267-272. Springer publishing. 
The text gives a short overview of how the research field of mathematics 
education started to evolve, and that this happened much later than the 
establishment of a practice. Short account of who took the initiative to form 
institutions (such as ERME, ICMI, IREM and others) where mathematicians and 
educational researcher could meet and discuss.  The ideas of Felix Klein and the 
relation between research mathematicians’ practice, and the teaching and 
learning of mathematics, are touched upon. Other more recent problems in the 
field are outlined, such as the actual and potential roles of technology in 
mathematics teaching. The text presents an overview of research in mathematics 
education, and therefore does not present specific research in any detail. 
 
Kilpatrick, J. (2008). The Development of Mathematics Education as an 
Academic Field. In The first Century of the International Commission on 
Mathematical Instruction (1908-2008). Reflecting and shaping the world of 
Mathematics Education, pp. 25-39 
First an historic overview is provided with the initiation of commissions for the 
development of mathematics education, where Felix Klein was an important 
figure. He introduced a reform program based on an alliance between teachers, 
scientists and engineers. The idea was to change teacher education to change the 
teaching in the direction of promoting practical instructions and the development 
of spatial intuition. It is discussed what mathematics is (which is not easily 
defined by mathematicians) and what education is. Different approaches are 
presented such as e.g. Nordic pedagogy tradition and the francophone tradition 
of didactic. It is argued that mathematics as a field of study as well as a practice 
revolves around teaching. It is through teaching it is promoted and constituted. 
This leads to the question (considered by others as well) what is and should be 
the relation between mathematics as a research field and as a discipline to be 
taught in different school settings.  
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Legrand, M. (2001). Scientific debate in mathematics courses. In Holton, D. 
(ED.) The teaching and learning of mathematics at university level: An ICMI 
study (pp. 127-135). Springer Netherlands. 
It is argued that engaging in a mathematics course is not equivalent with students 
becoming mathematicians, however it might require that they attempt to act like 
mathematicians and the class form a scientific community debating mathematics. 
Hence the paper proposes to orchestrate the teaching as a scientific debate. The 
debate can be initiated as “unplanned” debate based on a question raised by a 
student, a planned situation with the intention to introduce a new concept or 
overcome an epistemological obstacle, or the deepening of a concept or theory. 
Examples are provided of such initiators from first year of university mathematics 
teaching (including cross disciplinary examples), but several examples might be 
relevant for the secondary level as well. 
For the scientific debate to function it is important that the teacher give enough 
time for the students to develop their arguments individually, that he/she writes 
all arguments on the blackboard without judging them and the teacher should 
strive to maximize the number of students who engage and involve themselves in 
discovering a rational solution to the problem or conjecture dealt with. The 
students responsibility is to believe in the conjecture he or she argues for, develop 
rational arguments for the conjecture and finally to formulate the arguments so 
convincingly that both fellow students and the teacher is persuaded. In this way 
the didactical contract of the teaching of mathematics is explicitly changed to one, 
where the responsibility of students as the one acting, formulating and validating 
mathematical answers has become explicit. The paper draws on notions from 
TDS.   
 
Legrand, M. (n.d.) Les deux ateliers proposés par Marc Legrand reposent sur: 
Le “Débat scientifique” en cours de mathématiques. Retrieved from: 
http://kordonnier.fr/IMG/pdf/legrand.pdf 
The text provides further arguments regarding the haw scientific debate changes 
the didactical contract in the teaching and how mathematical activity (of 
mathematicians) resonates with scientific debate. Further comments from 
students are provided. Some of those find it difficult to imagine Scientific debate 
being introduced in primary education, although they found the teaching 
enlightening and good. Many students find the debates time consuming in the 
sense, that they are concerned if a Scientific debate course will actually cover the 
curriculum.  
 
Margolinas, C. & Drijvers, P. (2015). Didactical engineering in France; an 
insider’s and an outsider’s view on its foundations, its practice and its 
impact, ZDM - The International Journal on Mathematics Education, 47(6).  
The paper discusses the notion of didactical engineering which has influenced and 
characterized contemporary research in mathematics education in France. In the 
paper, the following from an insider’s and an outsider’s perspective is addressed: 
(1) the way this notion is theoretically grounded, (2) the kinds of design research 
practices has it led to and is leading to, and (3) the way it relates to the design 
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research paradigm. The paper compares the Dutch view on realistic mathematics 
education and the characteristics of the didactical engineering in France. 
 
Maaß, K. & Artigue, M. (2013). Implementation of iquiry-based learning in 
day-to-day teaching: a synthesis. ZDM Mathematics Education, 45, pp. 779-
795 
Abstract: This synthesis is designed to provide insight into the most important 
issues involved in a large-scale implementation of inquiry-based learning (IBL). 
We will first turn to IBL itself by reflecting on (1) the definition of IBL and (2) 
examining the current state of the art of its implementation. Afterwards, we will 
move on to the implementation of IBL and look at its dissemination through 
resources, professional development, and the involvement of the context. Based 
on these theoretical reflections, we will develop a conceptual framework for the 
analysis of dissemination activities before briefly analyzing four exemplary 
projects. The aim of our analysis is to reflect on the various implementation 
strategies and raise awareness of the different ways of using and combining them. 
This synthesis will end with considerations about the framework and conclusions 
regarding needed future actions. 
 
Miyakawa, T., & Winsløw, C. (2009). Didactical designs for students’ 
proportional reasoning: an “open approach” lesson and a “fundamental 
situation”. Educational Studies in Mathematics, 72 (2), 199–218.  
The paper analyses and compares two didactical designs on proportional 
reasoning. The one design is the enlargement of a puzzle known from the 
literature on TDS. The other design is based on the Japanese tradition of Lesson 
Study and Open-ended Approach. Both approaches carry an element of inquiry 
and both share the idea of students learning from potential mistakes.  
 
Monaghan, J., Pool, P., Roper, T., & Threlfall, J. (2009). Open-Start 
Mathematics Problems:  An  Approach  to  Assessing  Problem  Solving. 
Teaching  Mathematics  and  its Applications, 28 (1), 21–31 
The paper gives an introduction to problem solving and what defines an Open-
start problem, which is characterized by having multiple starting points but only 
one answer. The paper suggests how these latter problems can be used for 
assessment purposes, and by changing assessment it is proposed that classroom 
activities as well will be more inquiry based. 
 
Niss, M. (1999). Aspects of the Nature and state of research in mathematics 
education. Educational Studies in Mathematics, 40, pp. 1-24. 
The paper discusses the some fundamental questions for research in mathematics 
education: what challenges are the educational system facing, and why the 
teaching of mathematics should be of any interest of research mathematicians. It 
is formulated in the paper what is meant by a theory, what is mathematics 
education as a design research and what comes of this kind of research. Several 
findings are discussed such as perspectives on learning, known obstacles, the role 
of ICT and the conclusions points towards the need of students develop more 
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heuristic competences through none-routine mathematical problems, which can 
be interpreted as more inquiry-based approaches. 
 
Nohda,  N.  (1995).  Teaching  and  Evaluating  Using  "Open-Ended  
Problems"  in  Classroom. Zentralblatt für Didaktik der Mathematik, 27 (2), 
57–61. 
 
Nohda,  N.  (2000).  Teaching  by  Open-Approach  Method  in  Japanese  
Mathematics Classroom. Proceedings  of  the  Conference  of  the  
International  Group  for  the Psychology of Mathematics Education (PME), 
(1), 39–53 
An introduction to open-ended approach is given in the paper: based on an initial 
problem, students’ hypotheses and first answers lead to formulate new questions 
for further inquiry. Examples of different problems are provided, and it is 
discussed how the teacher deals with the variety of students’ answers. The 
teaching situations are sketched with an emphasis on the communication 
between the students and the teacher. At the end it is suggested that the link 
between open-ended approach and modeling should be studied further, and how 
this kind of teaching affect students’ attitudes towards mathematics. 
  
Polya, G. (1945). How to solve it? Princeton, NJ: Princeton University Press. 
This book has been deemed seminal by other researchers in problem solving and 
IBME as the starting point of the inquiry based approach to teaching and learning 
of mathematics. Polya describes the processes involved in problem solving as the 
core activity of a mathematician. He emphasizes the creativity and attitude 
towards mathematics needed to engage in problem solving activities. He 
introduces the notion of heuristics in the process of solving problems. 
 
Schoenfeld, A. H. (1985). Mathematical problem solving. San Diego: 
Academic Press. 
An elaboration and extension of the ideas of Polya. A detailed introduction to what 
problem solving is, what resources the students are supposed to draw on and 
what attitudes towards mathematical problems are needed.  
 
Schoenfeld,  A.  H.  (1992).  Learning  to  Think Mathematically:  Problem  
Solving,  Metacognition,  and  Sense  Making  in  Mathematics.  In  D.  A.  
Grouws  (Ed.), Handbook  of Research on Mathematics Teaching and 
Learning. A Project of the National Council of  Teachers  of  Mathematics (pp. 
334–370).  New  York:  MacMillan  Publishing  Company. 
The book chapter gives an introduction to problem solving mentioning Piaget and 
constructivism, the impact of teachers’ epistemological, ontological and 
pedagogical view on mathematics. He discusses Polya’s ideas on heuristics and its 
relation to metacognition. The paper contains general ideas on how to guide or 
assist student (university level) in developing problem solving skills and 
competences. However it is still (in 1992 at least) a challenge how to teach 
problem solving, since some kind of consensus seem to be reached regarding the 
definition of what it is. 
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Schoenfeld,  A.  H.,  &  Kilpatrick,  J.  (2013).  A US perspective  on  the  
implementation  of inquiry-based learning in mathematics. ZDM – The 
International Journal on Mathematics Education, Volume 45, Issue 6, pp 
901–909. 
 An discussion of the challenges which implementation of IBMT could face in the 
United states, considering  factors such as current curricula, the capacity of 
mathematics teachers, and public demands and beliefs concerning the nature and 
purpose of school mathematics.  
 
Singer, F. M., Ellerton, N., Cai, J. (2013). Problem-posing research in 
mathematics education: New questions and directions. Educational Studies 
in Mathematics, 83, 1, pp. 1-7. 
This is an overview paper introducing the current state of problem posing 
research in mathematics education. The paper starts by arguing how problem 
posing support students’ development of heuristic competences and how this 
relates to pursuing ones’ own questions. The paper is an introduction to a special 
issue of ESM and it provides and overview of the approaches to nurture students 
to pose questions with mathematical content, which can be found in the special 
issue. 
 
Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating 
productive mathematical discussions:  Five practices for helping teachers 
move beyond show and tell. Mathematical Thinking & Learning, 10, 313–
340. 
The paper provides a literature review on classroom discussions, which leads to 
the presentation of the authors’ model involving: anticipating, monitoring, 
selecting, sequencing, and connecting. It is concluded that: “Thus, the five 
practices do not provide an instant fix for mathematics instruction.  Instead, they  
provide  something  much  more  important:  a  reliable  process that  teachers  
can  depend  on  to  gradually  improve  their  classroom discussions over  time”. 
   
Ulm, V. (2012). Inquiry-based mathematics education in primary school: 
Overview and examples from Bavaria/Germany. In P. Baptist & D. Raab 
(Eds.), Resources for Implementing Inquiry in Science and in Mathematics at 
School. Implementing Inquiry in Mathematics Education (pp.65–81). 
Retrieved from http://www.fibonacci-project.eu/resources 
An example or model of how to design inquiry based learning environments, 
followed by some German examples from lower secondary school on basic 
number theory. 
 
  

https://link.springer.com/journal/11858/45/6/page/1


 

79 
 

Glossary of special terms used in this booklet 
 
Some of the articles here are based on formulation taken from the internet, which 
in general is a good source for gaining an initial impression of what a term means. 
They are presented here for the convenience of the reader and should not replace 
the necessary in-depth study of the material outlined in the bibliography. 
 

Philosophy of Learning and Knowledge 
Epistemology – in the narrow sense, a branch of philosophy concerned with the 
theory of knowledge, the nature of knowledge, its justification, and the rationality 
of belief. In mathematics education, epistemological aspects are more broadly 
concerned with the structure specific parts of mathematics and the obstacles and 
difficulties it present to learners, as a consequence of this structure.  
 
Constructivism – a philosophical viewpoint about the ways in which humans learn. 
The formalization of constructivism is generally attributed to Jean Piaget (1896-
1980), a famous Swiss psychologist who spent parts of his career to conduct 
clinical studies of how children learn basic mathematics, among other areas. He 
modelled human knowledge as built up by mental schemes of various types, and 
postulated that the construction of those schemes (learning) may take place 
through what he called assimilation and accommodation of existing schemes to 
the learner’s experience. Constructivist teaching is based on the belief that 
learning occurs as learners are actively involved in a process of meaning and 
knowledge construction, as opposed to passively receiving information. Learners 
are the makers of meaning and knowledge.  
 

General education (including both jargon and vague terms) 
Approach in education – a set of principles for teaching and, in a broader sense, a 
way of interacting with students that facilitates their learning. It can be described 
in terms of an established theory in mathematics education, or more informally 
by listing principles based on beliefs about the nature of mathematical knowledge 
and its learning. 
 
Teaching method – comprises the principles and methods used for instruction, to 
be implemented by teachers to achieve the desired learning by students. These 
methods are determined partly by the subject matter to be learned (e.g. quadratic 
equations), and partly by what is assumed or known about the learner (e.g. 
familiarity with square roots, interest in the topic, ability to concentrate and work 
independently, etc.). Teaching methods include lecturing, guidance, and 
orchestrating student work (with classroom discussion, group projects, working 
in pairs etc.)  
 
Learning outcome – an expectation about student’s knowledge or skills obtained 
after learning. Such expectations are often quite implicit. We consider that 
teachers use learning outcomes only if they are explicit about it – for instance in 
preparation, classroom delivery and assessment. 
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Traditional education – a term (not an approach!) that refers to long-established 
customs that were used in schools for a long time, often without explicitly stating 
them. Some forms of education reform promote the adoption of alternative 
education practices, for instance promoting an increased focuses on individual 
students' needs and self-control. Many reformers claim that they oppose 
traditional teacher-centered methods which focused on rote learning and 
memorization. In fact, “traditional” is often used with little precision. 
 
Passive learning – a method of learning or instruction where students receive 
information from the instructor and internalize it, often through some form of 
memorization or rote learning, often with no feedback from the instructor to the 
learner. 
 
Rote learning - memorization techniques based on repetition. The idea is that one 
will be able to quickly recall methods or facts, the more one repeats them. Rote 
learning is usually presented as insufficient and opposed to alternatives with 
attractive names such as meaningful learning, associative learning, and active 
learning. 
 
Active learning – learning which is based on learners’ own actions and initiative, 
including a participation in the organisation and evaluation of their learning.  
 
Student-centered learning (learner-centered education) – what is supposed to be 
achieved by methods of teaching that shift the focus of instruction from the 
teacher to the student. The idea is to develop learner autonomy and independence 
by leaving more responsibility for the learning path to students.  
 
Inquiry-based learning – a form of active learning that emerges from answering or 
posing questions, problems or scenarios – rather than simply acquiring 
established facts or pursuing a well-trodden path to knowledge. The process is 
often assisted by a facilitator. Inquirers will identify and research issues and 
questions to develop their knowledge or solutions. Inquiry-based learning 
includes problem-based learning, and is generally used in small scale 
investigations and projects, as well as in research. 
 
Discovery learning – a technique of inquiry-based learning, sometimes presented 
as a constructivist approach to education. Discovery learning takes place in 
problem solving situations where the learner draws on his own experience and 
prior knowledge and is a method of instruction through which students interact 
with their environment by exploring and manipulating objects, wrestling with 
questions and controversies, or performing experiments. 
 
Scaffolding (instructional scaffolding) – support given during the learning process 
which is tailored to the needs of the student with the intention of helping the 
student achieve his/her learning goals. It combines provision of support 
(resources, compelling tasks, and guidelines), giving advice and providing 
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coaching. As in the construction of buildings, the support (scaffold) is gradually 
removed as students develop autonomous learning strategies. 
 
Heuristic – any approach to problem solving, learning, or discovery that employs 
a practical method not guaranteed to be optimal or perfect, but sufficient for the 
immediate goals. 
 
Insight – understanding of the cause and effect within a specific context or a 
sudden discovery of the correct solution following incorrect attempts based on 
trial and error. Solutions associated with insight are supposedly more solid than 
non-insight solutions.    
 
Aha! moment (Eureka effect) – refers to the common human experience of 
suddenly understanding a previously incomprehensible problem or concept. In 
some cases, intuition and memory are involved in such effects, which are however 
generally somewhat inexplicable. 
 
Understanding – relation between the knower and an object of understanding. In 
general, understanding is a convenient but quite vague term; for a teacher, 
“understanding calculus” may be used as a quick way to characterize a 
performance satisfying more explicit criteria, and in general, being more precise 
about “understanding” is an important objective of theoretical frameworks on 
education and learning. 
 
Problem solving – reaching a goal in a situation when the proper path to use or a 
solution is not automatically recognized by the learner. Some question may be a 
problem to one learner (who does not know any immediate solution method) but 
not to another (who does know such a method). In other words, problem solving 
may occur under certain conditions related to the learner. 
 
Problem-based learning (PBL) – a student-centered pedagogy in which students 
learn about a subject through the experience of problem solving.  
 

 

Theory of Didactical Situations  
Institutional knowledge (sometimes called public, shared or official knowledge) – 
knowledge presented in textbooks, journals and resources, which represents a 
synthesis or the result of different mathematical activities. Easy to observe as it is 
explicit. Some languages have a specific term for institutional knowledge – for 
instance, in French, it is called savoir. 
 
Personal knowledge (sometimes called individual knowledge) – knowledge that 
students construct while interacting with a mathematical problem (milieu).  Often 
difficult to deduce from observations as it may be tacit, especially in the case of 
individual work. Some languages have a specific term for personal knowledge – 
for instance, in French, it is called connaissances.  
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Didactical situation – a teaching and learning situation in which the teacher is 
explicitly the moderator. 
 
Didactical milieu – the environment with which the student interacts to obtain 
new knowledge. It consists of the problem, artefacts such as pen and paper, ruler, 
calculator, CAS-tool (Computer Algebra Systems), a puzzle etc.; in didactical 
situations it involves also input from the teacher and other students. Learning is 
modelled as the adaptation, by students, of their personal knowledge to the 
didactical milieu. 
 
Adidactical situation – interaction of the students with the milieu (a mathematical 
problem) without the teacher’s interference.  
 
Target knowledge – a mathematical statement, method or notion that the teacher 
sets as the learning aim for her students, in a didactical situation. (A didactical 
situation is always a situation for something – namely, a target knowledge, known 
by the teacher but, initially, not by the students.) 
 
Devolution phase – phase in which the teacher hands over the milieu to students. 
Devolution refers to the transfer of responsibility to students for solving the 
problem, or at least attempting to do so. Sometimes several devolutions are 
deemed necessary to achieve a target knowledge; however, this should be done 
in controlled ways, to avoid trivializing or fragmenting the problem 
unnecessarily, as this may reduce in achieving less than the target knowledge (see 
also Didactical contract).  
 
Action phase – phase in which students autonomously engage with a problem.  
 
Formulation phase – phase in which the students explicitly formulate outcomes of 
the action phase (initial ideas, hypotheses or strategies to solve the problem, more 
or less general solutions).  
 
Validation phase – phase in which the students are testing their strategies or 
hypotheses against the milieu, in order to establish the validity of their methods 
and solutions. 
 
Institutionalisation phase – phase in which the teacher directly declares the 
institutional knowledge. In some forms of teaching, such as lecturing, it may occur 
all by itself. In other forms, like the designs often developed within TDS, it is 
closely related to the preceding phases, so that personal knowledge achieved by 
the students is merely reformulated in this phase, and explicitly recognized as 
consistent with official knowledge, warranted by the (school) institution. 
 
Didactical contract – the set of mutual expectations between teachers and 
students, concerning their respective responsibilities in a concrete didactical 
situation (or part thereof). The contract is usually implicit and we can only 
observe its effects in teachers’ and students’ actions. Some of these effects are 
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quite general and frequent in mathematics teaching, for instance the students’ 
insistence that teachers must provide answers they do not find immediately, or 
teachers’ tendency to comply with this insistence in more or less concealed ways, 
for instance by providing “hints” or by reducing the original task. TDS names and 
studies some of the most common effects, and it is of great interest to both 
teachers and researchers to be familiar with this classification; interested readers 
are referred to Brousseau (1997), Chapters 1 and 5. 
 
Didactical engineering - a research methodology based on the controlled design 
and experimentation of teaching sequences and adopting an internal mode of 
validation based on the comparison between the a priori and a posteriori analyses 
of these. However, since its emergence in the early 1980s, the expression 
didactical engineering has also been used for denoting development activities, 
referring to the design of educational resources based on research results or 
constructions and to the work of didactical engineers. (Source: Encyclopedia of 
Mathematics Education). 
 

Realistic Mathematics Education  
Realistic situation – refers to a situation that is “real” to the learner, in the sense 
that it concern objects, notions etc. which are familiar to the learner. The situation 
makes sense to the students and makes them feel comfortable to start thinking 
because it relates to their prior knowledge. It may be related to every-day (real) 
life, but that is not necessary.  
  
Rich (structure or context) – allowing for different approaches or solutions, 
connecting to various aspects of the learner’s knowledge, useful beyond the 
situation where it is introduced.  
 
Mathematisation - entire organizing activity of a mathematician that involves 
creating axiomatic systems, formalizing, forming meaningful networks of 
concepts and processes, constructing algorithms, representing and simplifying 
etc.  
 
Anti-didactical inversion – taking the end point of the mathematician’s work as a 
starting point for teaching mathematics.  
 
Emergent modelling – creation of mental schemes of concepts and processes in 
the mind of a learner related to a problem situation. Models of informal 
mathematical activity develop into models for mathematical reasoning.   
 
Guided reinvention – the process in which students reconstruct and develop a 
mathematical concept in a problem situation with the support (guidance) from 
books, peers or a teacher. 
 
Horizontal mathematisation – transition or modelling of a real-world problem 
into a mathematical discourse. 
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Vertical mathematisation – development of a method or a theory for solving a 
mathematical problem.  
 
Didactical phenomenology – the art of finding phenomena, contexts or problem 
situations that beg to be organized by mathematical means and invite students to 
develop targeted mathematical concepts.  
 
 
 


