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0 Preface 

'Realistic' as connotation of mathematics education provokes confusion. On the 
one hand 'realistic' refers to the objectives with respect to their realizability both 
for the teachers and the learners. On the other hand 'realistic' concerns the didac
tics of (re)construction. In the latter meaning this not only means establishing the 
connection between reality and the mathematics to be learned, but also creating 
the possibility for the leraners to construct a mathematical reality. 
This mathematics bears meaning because of the way it is brought forward. In this 
manner mathematics comes to life for the learners and stays meaningful for them 
even when they grasp the level of formal subject systematics after a process of 
abstraction. In order to enable them to do so, much attention is paid to the devel
opment of models and schemes. These and other mathematical tools encourage 
a process of progressive mathematisation and promote the vertical coherence in 
the system to be built. 
Now then, mathematics education that claims 'realistic' as its main qualification 
possesses some specific characteristics with respect to teaching and learning. 

In the first chapter these tenets will be elucidated in brief. 
In the following chapters some of these tenets will be elaborated more profound
ly. 
Subsequently it concerns the role and function of context-problems (ch.2), spe
cial assignments like doing free productions (ch.3) and, because realistic mathe
matics instruction has its special demands for it, the question of testing (ch.4). 
A view on realistic geometry will close our discourse (ch.5). Here again the the
oretical framework will be dealt with and reflected upon. 

By doing this the circle becomes closed. This, however, does not mean that real
istic mathematics education behaves like a vicious circle. On the contrary we 
would rather say. This is proved by the fact that the awareness becomes more and 
more ubiquitous that schoolwalls may not be barriers between the mathematics 
of the outside world andthe inside mathematics anymore. 

At the eleventh conference of the North American chapter of PME (Psychology 
of Mathematics Education) at New Brunswick NJ 1989 we explained earlier 
what has been put in order neatly in this book. 

State University of Utrecht, The Netherlands, 

Koeno Gravemeijer 
Marja van den Heuvel 

Leen Streefland 
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1 Realistic Mathematics Education (RME) 
What does it mean? 

Leen Streefland 

1.1 Introduction and overview 
Leaming mathematics, such as considered in this contribution, means construct
ing mathematics or - to say it more explicitly - proceeding from one's own in
formal mathematical constructions to what could be accepted as formal mathe
matics. This implies two questions to be answered: 

'What are the features of this kind of learning mathematics?' and 
'How to realise it?' 

When switching from learning to teaching one might correspondingly ask: 
'What are the background principles of RME?' and 
'By what teaching methods can this kind ofleaming mathematics be brought 
about?' 

Both questions will be answered in § 1.3 by the paradigmatic example from ini
tial learning of subtraction ( < 100), presented in § 1.2. In § 1.4 our approach will 
be compared with that of Thornton a.o.1983, where some general characteristics 
of both approaches will be summarised and considered theoretically. 

1.2 Subtraction (<100) 
There are many applications of subtraction in which column subtraction is nei
ther the most natural nor the closest fitting approach. More often than not do chil
dren prefer quite different strategies. Let us consider the following 

Example: 
My book counts 53 pages. I have read 26. How many more shall I have to read 
to finish it? 

Many children don't identify this problem as a subtraction. As a matter of fact, 
three out of four pupils in the intermediate grades do not. (Cf. Treffers a.o. 1989. 
So they are not able to apply: 

53 
26-

in this particular situation. Even if they can they are handicapped by other awk
ward features of algorithmic column subtraction: To half of the pupils in the in
termediate grades the algorithm itself is problematic; by the 'right-to-left meth
od' any feeling for number size gets lost. The algorithm is artificial, it does not 
match strategies of mental computation and estimation; it does not respect strat
egies of two-way complementary counting, and the structure of the algorithm it
self deviates from that of many applications. Even the simultaneous use of con-
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crctc material creates specific problems as has been shown by research. Moreo
ver if lost, this specific algorithmic ability is not easily restored. (Cf. Resnick & 
Omanson 1987). So we have to answer the question how to solve this problem 
from a realistic point of view, that is in a (re )constructive manner? 
Well, let us return to the example. Even though they do not identify the problem 
as a subtraction many children are able to solve it. For instance, starting with 26 
they try to bridge the distance from 26 to 53 by means of counting onwards (com
plementary counting). 
E.g. 
a. (26) + 4 (30) + 10 (40) + 10 (50) + 3 (53) ___ _.. 27 

b. (26) + 10 (36) + 10 (46) + 4 (50) + 3 (53) 

c. (26) + 4 (30) + 20 (50) + 3 (53) 

d. (26) + 20 (46) + 7 (53) 

27 

27 

27 

These various methods can be represented on the numbcrline as well, that is, on 
an empty or yet unstructured numberline.1 Let us show how, according to the 
afore mentioned strategies, children fix key-points on it: 

a. 30 10 
40 

b. _...:.1~0--+ __ 101 

(26) 36 
4 3 

46 50 
(53) 

c. ~4--1--__ 20 

(26) 30 
3 

50 
(53) 

cl. 20 
7 (53) 

46 (26) 

Depending on the choice of key-points, solutions may vary (e.g. 4 + 20 + 3 = 27 
and so on). In teaching, the drawbacks of the traditional column approach to
wards subtraction can be made good for by the use of the unstructured number
line. Indeed, working on the empty numbcrline is closely linked up with com
pound and with two-way complementary counting: subtraction might appear as 
the mirror image of addition in counting onwards strategies. This conforms with 
variegated methods of pure and applied subtraction. Three stages can be distin
guished in the program: 
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1. Working by rows according to different counting and compounding methods 
or by mental complementary computation as shown before. Specimens of pu
pils' work: 

2. Working by columns, albeit by means of different methods of mental compu
tation both according to rows and columns, for instance: 
a. 53 53 

26- or 26-
30 - 3 = 27 30 - 3 

27 

30 

(23) 3 (26) (53) 

This is kind of conventionalised or stylised mental computation. 
b. 53 

26 -
3-3 (a debt of 3 on a possession of 30 makes 27). 

3. If required a final algorithm can be aimed at, respecting the children's predi
lection to work from left to right as well as the historical roots of the algo
rithms.2 Experiments on learning long division in stages has shown how final 
algorithms, in order to be mastered, can be headed for by slow and gradual 
steering. 

1.3 Theoretical framework of teaching-learning principles. 
In a way the above example is a concrete form of the fundamental and mutually 
connected principles of teaching and learning mathematics according to the di
dactics of reconstruction such as formulated by Treffers (1987). Of course this 
mutual connection between teaching and learning principles does not exclude 
other links. 
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The principles (or tenets) to be considered are: 
1. Constructions stimulated by concreteness. 
2. Developing mathematical tools to move from concreteness to abstraction. 
3. Stimulating free productions and reflection. 
4. Stimulating the social activity of learning by interaction. 
5. Intertwining learning strands in order to get mathematical material struc

tured. 

1.3.1 Constructions stimulated by concreteness. 
Pupils find out their own procedures to compute 53 - 26, thanks to the concrete 
base of orientation for the operation involved. All kinds of applications and real 
situations are starting points for the children in the refining teaching-learning 
process directed towards the mastery of these procedures (informal strategies 
like counting, compounded counting, and structuring, stylised mental computa
tion, which from the beginnings onwards are firmly anchored in the contexts). 
The above example in particular and real problems or contexts in general create 
opportunities for the children to realise what numbers and operations really refer 
to. 
To stress it once more, concreteness in the RME sense is quite a different thing 
but materials like (Dienes) blocks to be manipulated by the children. It does 
mean using suitable contexts (cf. chapter 2). This, then, is the way to satisfy the 
construction principle: by lending concreteness to activities which pave the road 
into mathematics, as well as through mathematics, which to our view is the prop
er way to learn mathematics. Reality both serves as a source for concepts, ideas, 
operations and structures and as a domain to apply them. At the same time - as 
has been shown - 'realistic' means adapting the content of teaching to the child
ren's informal strategics. 

1.3.2 Developing mathematical tools to move from concreteness to abstraction 
Learning a mathematical concept or skill is a long-term process which is passing 
through different levels of abstraction. Opportunities need to be provided to have 
learners to proceed along levels of increasing abstraction. The variegated solu
tions of the above example reflect this phenomenon. First, the notations refer to 
reading the book, and most strongly those which reflect the onwards version of 
complementary counting. Computing is still a concrete procedure, not yet de
tached from the context. Later on when the numbcrlinc and mental column arith
metic are used, reference to the concrete can still subsist, though it is not any 
more needed to apply the notations. The empty numberline both functions as a 
thinking model with respect to applications and as a computing model. On the 
third or abstract level, when the procedures of mental column arithmetic have 
been formalised, the procedure will entirely be understooci within the frame of 
the formal number system. There the depth structure of subtraction will become 
clear. This is the reason why one should insist on the possibility and necessity to 
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distinguish three stages in the teaching-learning process. Let us add that inter
twining real problems with learning subtraction guarantees a larger measure of 
applicability of the operation involved. 
Mathematical aids and tools like the unstructured numberline are needed to 
achieve the required raises in level. By means of these tools pupils move on their 
own from the concrete via the intermediate to the abstract level while, to be sure, 
guided and supported by their teachers. In other words, by means of these tools 
the pupils will be able to understand their provisional mathematics as derived 
from the concrete sources in the intermediate stage between the concrete level 
and the level of formal subject systematics, rather than being confronted with the 
latter from the start onwards. 
Obviously, in no way are our levels related to the well-known tripartite sequence: 
concrete material, pictures, mental actions (or, in Bruner's terminology, enac
tive, iconic, symbolic). Instead our levels refer to the degree of closeness to con
text problems, allowing for primitive or informal strategies, and to moving on
wards to more formalised procedures within the systematics of the subject area. 
Indeed, the intermediate level is of a paramount importance. Aided by tools to be 
developed in the teaching-learning process, the pupils can invent and develop 
their informal strategies.The empty numberline is such a tool, which functions as 
a bridge between the concrete and the formal level. 
'Concrete - abstract' is of course not an absolute distinction. Abstract knowledge 
of natural number, for instance, is one of the concrete sources of algebra. So the 
third or abstract levels in lower order learning processes will serve as concrete 
levels in higher order mathematical activities (freffers, 1987; Streefland, 1987). 

1.3.3 Stimulating free productions and reflection. 
Learning mathematics and especially raising levels is promoted by reflection, 
which means thinking about one's own thinking. As an example let us consider 
the development of an algorithm out of mental column subtraction using the 
'possessions and debts' model (cf.section 1). 

rJ1...; d4 0 <S4 d4 au 84 dl.J 
2..1 ...LJ_- 60);- ..£i.= ~ 

26- ~; 
001.3 (;o/~ 6aJQ I bo/-< -- ~ I_, \.:- \._/ 

'- '-' G3 62. &! 5') 58 Sr 

For children it is quite natural a method (cf. Labinowicz, 1985), and at the same 
time an opportunity to invent their own appropriate notations. By gradual short
ening this can eventually lead to what rightly deserves the name of an algorithm 
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for subtraction: 

a) 8371 

3754 

5000 - 400 + 20 - 3 = 4617 

c) 8371 

3754 

5-42-3 

462"3 

4617 

b) 8371 

3754 

5000 
-400 
+20 

-2 
4617 

4600 
4620 
4617 

For the teacher it means giving the learners continual opportunities to take retro
spective views on what they have done and to stimulate this activity. It also in
volves anticipation on what will come next in the course. 
Both 'free productions' - to be defined and exemplified in more detail later on 
in chapter 3 - and cognitive conflicts are important means to evoke reflection. So 
the requirements for reflection as the driving force in individual learning proc
esses can be met by selecting special assignments in the course design and by 
promoting the pupils' own productions. 

1.3.4 Stimulating the social activity of learning by interaction 
The next principle of instruction asks for learning as a social activity. As a matter 
of fact, learning takes place in the social school environment. Never allow learn
ing to be restricted to a purely individual concern! 
Learning subtraction in a reconstructive way aims at opportunities to freely con
struct and produce problems and mathematical procedures, starting from various 
realities and developing various techniques. Since the open, realistic approach 
evokes differentiated and variegated patterns of reaction such as shown by the 
above specimens of children's work, there are recurrent opportunities for inter
action. Pupils will compare and exchange ideas, discuss solutions of problems at 
different levels of mathematisation and negotiate the best ways to further 
progress. By reflecting on their approaches they will try more and more efficient 
methods of visualising and schematising, for instance: 
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- translating numberline procedures of complementary counting into computa
tion methods; 

- transposing row procedures like those on the numberline into column proce-
dures; 

- grasping the 'possessions and debts' model; 
- hitting on particular notations to curtail the previous approach; 
- looking for each other's individual productions. 
In general, opportunities to compare one's own work with that of others function 
as well as opportunities to reflect on one's own methods of problem solving. The 
requirement for interaction in order to provoke group learning can be met by re
specting the learning environment at school as a social context for learning. It is 
the place where the exchange of ideas, negotiations, refutation of arguments, dis
cussions and so on can serve the long-term learning process, and the prerequisite 
for truly individualized teaching. At the same time interaction helps the entire 
group to progress in learning mathematics. Rather than cutting off possibilities 
to get informal strategies and procedures developed by the pupils, they are ac
cepted, promoted and exploited. 

1.3.5 Intertwining learning strands in order to get mathematical material struc
tured 
The final principle of instruction concerns intertwining learning strands. Like in 
the case of subtraction, from the very beginning onwards, related parts of the pro
gramme are to be intertwined in order to have operations well enough understood 
to be applied successfully. 
It has been argued that children who are learning the main operations with natu
ral numbers are inclined to apply procedures evoked by the context. In other 
words, while applying methods, they still remain committed to the context. By 
our approach informal procedures of addition and subtraction such as counting 
onwards and backwards, involving mental computation and estimation, and fi
nally the development of an algorithm will be strongly interconnected and inter
woven.Rather than storing away in one's mind a collection of detached elements 
of knowledge and skills, learning mathematics will mean constructing structured 
knowledge and skills fitting into a well-organised and meaningful whole. In 
RME the long-term perspective, such as displayed in the level structure of the 
learning process, is of paramount importance. If courses in different subject areas 
are both interwoven with each other and related to reality as much as possible, 
pupils will construct coherent and well-structured knowledge and skills, with a 
large measure of applicability. 

1.4 Overview and reflection. 
Our exposition reads like an implicit criticism of the one-sided approach of col
umn subtraction supported by such concrete material as blocks. Explicitly for
mulated our objections are that: 
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- children's informal strategies are both neglected and blocked; 
- levels of progression as usually distinguished by cognitive scientists lack suf-

ficient explanation; 
- the final level of algorithmisation is headed for too rapidly, too rigidly, and 

too straightforwardly; 
- from the very beginning onwards arithmetical problems are column-wise 

presented; 
- algorithms to be learned are divided into partial algorithms corresponding to 

number size (falsely identified with levels). 

The main characteristics of our approach were: 
- taking into account children's informal strategies, first conventionalised in 

rows and columns; 
- providing the pupils with mathematical tools to help them to bridge the gap 

between the concrete and the formal level (and consequently viewing levels 
in a different way but the usual one); 

- intertwining related learning strands of counting, mental computation, esti-
mation, column procedures, and applications. 

The plea for more mental computation in the 'NCTM-Standards' was answered 
here by suggestions how to connect mental computation with learning (an) algo
rithm(s) - suggestions lacking in the 'Standards'. 
We mentioned five theoretical principles, which return time and again in general 
teaching-learning theories such as.3 In our approach they acquire a meaning 
which differs - for instance - from that of the cognitive science approach to math
ematics. Our background theoretical framework is a synthesis of constructivism 
and cognitivism. On the one hand a manifold of opportunities is given to child
ren's own contributions to the teaching-learning process, and on the other hand 
the overall goal of our approach is that pupils reach the level of subject-system
atics. Finally we like to draw attention to the way our ideas have been presented, 
that is, connecting the general theoretical aspects to a well-elaborated example 
and confronting them with a different approach. 
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Notes: 
1. Hassler Whitney described the idea of the unstructured numberline in an unpublished 

paper 'Sane decision making in Mathematics Education'. 
See also Grossman (1975), Labinowicz (1985), Madell (1985), Treffers a.o. (1989). 

2. Cf. Streefland (1988) and his chapter on free productions to this book and also Treffers 
a.o.(1989). 

3. Cf. Cobb (1987). In piagetian theory, for instance, the distinguished basic principles 
can be recognised, though with respect to interaction and learning in a social environ
ment this aspect was recognised by Piaget rather late; see for instance Piaget's discus
sions with the journalist Claude Bringuier. 
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2 Context Problems and Realistic Mathematics Instruction 

Koeno Gravemeijer 

2.1 Introduction 
One of the main features of the so called 'realistic' textbooks developed in the 
Netherlands is the way context problems arc being used. In realistic instruction 
context problems hold a position comparable to that of concrete models (such as 
Dienes blocks) in the structuralist approach - an approach often found in instruc
tional design based on information-processing psychology. In order to clarify the 
role of context problems in realistic instruction let us confront the realistic and 
the structuralist approaches with each other. 
Structuralist instruction starts with establishing relational understanding of con
ccpL'> and procedures, before it is heading towards applications; by their place at 
the end of some chapter it distinguishes itself from realistic instruction. True con
text problems are lacking in structuralist instruction. 
Indeed, the well-worn stereotyped word problems hardly deserve the name of 
context problems. Meant as mere applications, they have to account for subject 
matter learned shortly before, which explains their one-sidedness. For tasks to be 
set one has to resort to situations where the previously learned skills and concepts 
can be applied without difficulty. In this respect, structuralist courses follow a 
long tradition in mathematics instruction. 
The realistic approach rejects the instructional partition between mathematical 
knowledge and its application. On the contrary, applications play an important 
role in the factual development of mathematical concepts and skills. The role at
tributed in structuralist instruction to concrete models as a basis for understand
ing is played by context problems in realistic instruction. 
In our exposition this will be illustrated by pictures from the instruction of mul
tiplication and division. For a start, however, let us tell well-known joke in order 
to explain what we mean by the word 'context'. 

Ten birds on a tree. Two of them are shot. I/ow many are left? 

The joke is meant to fool those who answer 'eight'. Indeed, none will be left 
since all of them are frightened by the sound of the gunshot. Context means more 
than the explicit data of the problem; it embraces all associations the problem 
calls up. This property characterises context problems in general; students are 
allowed to bring to the fore their own knowledge about the situation; in fact they 
need this common knowledge for problem-solving. 
But there is more to it. What is the background of this joke? How is it possible 
to fool people by such a simple problem? There is something wrong in education, 
and in particular in that little world of school problems with its body of - most 
often implicit - rules. In a Dutch textbook of the traditional brand we found the 
following task, where students are expected to use the formulas 'length times 
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width' and 'two times length plus width'. 

The perimeter of a meadow is 1.2 km. 
The length is 400 m. 
The area is .. .. .. hrrt. 

:i.~ar~~ 
,,.,- ..,_,,,,-...__ 

7"_.. .,- \ 

* Think of the perimeter divided by two. 

Apparently the textbook author saw no reason to instruct the illustrator to give 
the meadow a rectangular shape, whereas the illustrator was not acquainted with 
the rule that meadows are always rectangular, at least in school problems. 
'A car drives with a speed of 90 kilometres per hour from A to B .. .', will imme
diately be recognised as one out of the world of school problems. How far away 
from reality it is, became clear to a colleague of mine who administered the fol
lowing exercise to 14 year olds. 

A car is driving with a speed of 90 kilometres per hour. 
How long will it need/or 500 meters? 

The students reacted: 'One cannot possibly tell unless one knows how fast it is 
going.' At first, my colleague felt being fooled, but after a while she understood 
that the students thought of their own experiences with trips by car. They knew 
that riding by car involves putting on the brakes, accelerating, waiting for trafic 
lights, and gaining momentum on the main road. Indeed, the statement that it 
takes one hour to cover 90 kilometres does not provide any information about the 
speed at an arbitrary moment. 
The usual instruction of word problems tends to disregard the student's informal 
experiential knowledge. So it both blocks the way to mathematical applications 
and misses the opportunity to use this knowledge in a beneficial way. 

2.2 Informal knowledge 
Experiential knowledge like this is also known as informal knowledge or intui
tive notions, which indicates that it has been gathered without teaching, or that 
students are hardly aware of it. 
Adults also have this kind of knowledge at their disposal. Unwittingly, we know 
a lot more than we realise ourselves. DiSessa gives the example of the move-
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ments someone makes who lifts an empty dustbin in the expectation that this 
dustbin is loaded with stones. From the odd movements this person makes one 
can infer the existence of a lot of scientific knowledge that does not depend of 
that of Newton's laws. 
If you can rely on informal knowledge, it is often easier to solve a real problem 
in reality, than it is to solve its counterpart in mathematics. Carpenter & Moser 
(1984) as well as others found that the development of young children's ability 
to solve context problems goes ahead of that of their arithmetic abilities at 
school. Conversely, one may expect to be able to evoke informal solving proce
dures by administering context problems which anticipate on mathematical 
knowledge not yet taught at school. Let me show you an example. 
We gave the problem of dividing 36 by 3 to third-graders who had never made 
multiplications with numbers bigger than 10, let alone performed the inverse di
vision procedure (Galen, e.a.; 1985). Of course, rather than using a formal rep
resentation like 36 +3 we presented a context problem. 

Three children shall divide 36 sweets. 
flow many sweets will each of them get? 

•••••• •••••• •••••• •••••• •••••• •••••• 

The students invented all kinds of solving procedures: 
- dividing on a geometric base: 

• • • • • • 
• • • • 0 • 
• • • • • • 
• • • • • • 
• • • • • • 
• • • • • • 
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Thus the area of a square containing the 36 sweets is divided in three equal parts. 
- distributing one by one: 

Thus the sweets are distributed one by one. One by one they are crossed out of 
the total and added to one of the rows. (The students even tried to copy the chil
dren's pictures faithfully.) 

- grouping: 

Some students draw equal groups, divide them by three and count their contents. 
Some of them draw groups of three: each time one sweet is distributed to each of 
them, the stock diminishes by three. 
Two main solving procedures show up: distribution division and ratio division. 
The distribution division appears most clearly in the geometric solution, where 
the student interprets the problem by the way of creating three equal groups. 

~~t 
/) ~ 

EO~eJ 
distribution division 

~to 
/{\~~~ 

@6)G0@.@ 

ratio division 
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Some students ask the different question 'how many groups of three can be 
made?', which aims at a ratio division. 
The relation between both of them was already indicated. Distributing one by 
one focuses on creating three equal groups. At the same time it appears that eve
ry time each one gets a sweet, the original number of sweets is decreased by 
three. Therefore, this approach causes the question for the number of times this 
can be repeated. It requires, however, a translation of the problem, since the orig
inal context problem aims at a pure distribution division. A ratio division may be 
suggested by a problem like the following': 

A net keeps three balls. 
How many of such nets will be needed for 36 balls? 

2.3 Developing long division 
For two reasons we now stress ratio division. First, ratio division can easily be 
connected to the column algorithm. Second, traditionally instructed children find 
it difficult to relate this algorithm to that kind of applications. Research by Hart 
(1981) shows that, rather than using the column algorithm, students are inclined 
to solve applied division problems by repetitive subtraction. The following ex
ample (Dolk & Uittenboogaard; 1989) shows how repetitive subtraction is pro
voked by ratio division. Children of about the same age as the 'sweets dividers' 
were asked to solve the following problem. 

Tonight 81 parents will visit our school 
At each table six parents can be seated. 

,,,.....~ 
cc=]) 

~'-..::1 

How many tables do we need? 

The students produce all kinds of solutions: 
- some use repetitive addition: 6 + 6 + 6 + ... , or stepwise multiplication, prob-

ably based on addition, 1 x 6, 2 x 6, 3 x 6, ... , some just write down the result-
ing sequence 6, 12, 18, ... ; 
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- some use 10 x 6 as a starting point, in order to continue by multiplication or 
repetitive addition; 

- one student knows 6 x 6 = 36 by heart, which is doubled to get 12 x 6 = 72 , 
one 6 is added, and finally one more 6. 

The teacher stimulates the students to compare their solutions. Obviously most 
of them find the first jump to 1 0x6 a handy trick. When afterwards a similar prob
lem (concerning the same night at school) is administered, it appears that a sub
stantial part of the students imitate the 'ten times' trick spontaneously. 

One pot holds seven cups of coffee, every parent gets one cup. 
How many pots of coffee are to be brewed for the 81 parents? 

Only one child sticks to the single step method. Thirteen use the 'ten times' trick, 
compared with six in the first round. From the work of three children it not clear 
how they got their answer. 

The solution procedures of one of the students. 
81 people; six at each table (tafels) 

&l ~ b ~ a.cvn. ~ taf11-
W ID IIl /!J Ill ~ lV lfJ ~ ID @0 l8 ~ 

1~t~ 
each pot holds seven cups, how many pots (koffiepotten) are needed? 

It should be noted that the teacher had not made any suggestions whatsoever to 
use the 'ten times' trick. Rightly one had expected that those who saw its advan
tage and trusted it, would use it on their own initiative. 
The procedure that is here employed to solve what in principle is a division prob
lem, can be labelled as 'compounding'. One tries to approach the dividend as 
closely as possible by adding up multiples of the divisor. As a matter of fact, we 
ourselves prefer this strategy for mental divisions. For instance, the easiest way 
to know the average gasoline consumption of one's car is to reset the hodometer 
when the tank is full, and to compare the number of kilometres with the amount 
of fuel needed to refill it next time at a gas station. One may even try a more 
precise estimate, while driving away from the gas station. In our country gas con
sumption is measured by kilometres per litre of fuel. Suppose you used 34.09 li
tre for 466.8 km, which would require the division 466.8 + 34.09. To keep it sim-
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ple let us do 467 + 34. Obviously 34 goes at least ten times into 467. Ten times 
34 gives 340 to start with. Two more times? 
No, three more times gives 340 + 102 = 442, which means 13 km per litre. Or 
more precisely, one decimal at least: with 25 left by 467 - 442 do 0.5 x 34 = 17, 
0.7 x 34"' 17 + 7 = 24. So our estimate would be 13.7 km per litre. 
If we compare this calculation with the column algorithm, it appears that our 
mental arithmetic resembles the standard procedure. 

34 I 467 \ 13.7 

34 -

127 

102-

250 

238-

12 

In fact, translated into the mental procedure, this means: 

34 I 467.0 \10+3+0.7=13.7 

340 - [10 X 34] 

127 

102 - [3 X 34] 

25.0 

23.8 - [0.7 X 34] 

1.2 

However, the algorithm is so condensed that one hardly realises that at the first 
step 10 x 34 = 340 rather than a mere 34 is subtracted. On the other hand, it is not 
so difficult to recognise the underlying repetitive subtraction behind this proce
dure: after any subtraction of a multiple of the divisor, one concentrates on what 
is left. In fact the column algorithm of long division is nothing but the most ab
breviated manner to perform a division by counting how often the divisor can be 
subtracted from the dividend. 
In realistic mathematics instruction it is tried to teach the standard procedure by 
letting it evolve from informal ones in a learning process, which starts in a situ
ation where the tool of repetitive subtraction offers itself in a natural way. From 
the start onwards rather large numbers can be allowed for in the assignments!, 
which seems to be an advantage. 
The broader context of the following problem is a story about Dutch sailors who 
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got their ship stranded at the isle of Nova Zembla. 

NOVA ZEMBLA 

The captain of the stranded ship is told that there are 4000 biscuits left. 
The crew consists of 64 members. Each man gets 3 biscuits a day, 
which means 192 biscuits a day the whole crew. 
How long will this supply last? 

We can almost see the supply of biscuits diminish day by day, every time a ration 
is consumed. 
What makes this problem interesting is the variety of solving procedures on dif
ferent levels. The students would not stick to subtracting 192 once at a time. They 
would use multiples of 192 as well, say, decuples, or doubling. 

4000 4000 4000 

192 -1 day 192 - 1 day 1920 - 10 days 

3808 3808 2080 

192 - 1 day 384 - 2 days 1920 - 10 days 

3616 3424 160 
192 - 1 day 768 - 4 days 

3424 2656 
192 - 1 day 1536 - 8 days 

etc. etc. 

With an appropriate context problem one may induce children to using decu
ples.1 

1128 supporters want to visit the away football game of F eijenoord. 
The treasurer is given the information that one bus can take 36 passengers 
and a reduction is obtained for every ten buses. 

The information on the reduction may work as a suggestion to calculate the 
number of reductions. It will call the students' attention to the opportunities of-
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fered by the decimal system. Even then various solutions are possible. 

36 I 1128 \ 36 I 1128 \ 36 I 1128 \ 

360 - l0x 360 - lOx 1080 - 30x 

768 768 48 

360 - lOx 720 - 20x 36 - lx 

408 48 12 

360 - l0x 36 - Ix 

48 12 

36 - Ix 

12 

Such leads on the way to the column algorithm are opportunities for discoveries 
to be made by the students at their own level, for building upon their own expe
riential knowledge and performing short-cuts at their own pace. 
Working with real problems also implies a different approach to the problem of 
the remainder, that is, as a real life phenomenon that asks for practical solutions, 
rather than as a peculiarity of non-terminating divisions, which must be account
ed for by formal arrangements. If the context is taken seriously, then '31 rem.12' 
is not an acceptable answer. What can we do with these 12 supporters? Well, 
there are several possibilities, distribute them over the other buses, order an extra 
bus, or speculate on the withdrawal of at least 12 at the last moment. 
The realistic approach makes us aware of the variety of meanings which can be 
attributed to the remainder. Treffers (1989) listed the following examples for the 
division 26 +4: 

1. One has to transport 26 persons by cars. 
Each car takes 4 passengers. 
How many cars will be needed? [7] 

2. A rope of 26 metre is cut up in pieces of 4 metre. 
How many pieces does one get? [6] 

3. If 26 bananas are fairly to be divided among 4 people 
how many bananas will each of them get? [6.51 

4. A walk of 26 km is divided in 4 equal stages. 
How long is each of them? [6.5] 

5. A rectangular pattern of 26 trees with 4 trees a row, 
how many rows will there be? [?!!] 

6. A rectangular terrace with a size of26 square meters 
has a width of 4 meter. 

How long is this terrace? [6.51 

The interpretation of the remainder largely depends on the situation in which the 
result of26 +4 has to be used. The large variety of applications confronts us with 
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the question of how to take care of the applicability of skills and concepts in 
mathematics instruction. 

2.4 Two models 
The fundamental change brought about in mathematics instruction by the realis
tic approach, is most apparent in the way applications are dealt with. The usual 
view on mathematics is that of the ready-made system with general applicability, 
and on mathematics instruction as falling apart into learning the formal mathe
matical system and learning to apply it. For the realistic approach the emphasis 
is on mathematising, mathematics viewed as an activity, a way of working. Then 
learning mathematics means doing mathematics, of which solving real life prob
lems is an essential part. Manifold context problems are integrated in the curric
ulum from the start onwards. 
The two fundamentally different views on mathematics and mathematics educa
tion imply essentially different mathematical learning processes. With mathe
matics as a formal system, its applicability is taken care for by the general char
acter of its concepts and procedures, and thus, first of all, one has to adapt this 
abstract knowledge to solving problems set in the reality. One has to translate 
real life problems into mathematical problems. Let us visualise this as follows: 

formal mathematical system 

context roblems 

The model describes the process of solving a context problem with the help of 
the formal mathematical system. First the problem is translated; it has to be for
mulated in mathematical terms, as a mathematical problem. Next, this mathemat
ical problem is solved with the help of the available mathematical means. And at 
last the mathematical solution is translated back into the original context. Many 
aspects of the original problem may have been obliterated when it was trans
formed into a mathematical problem. Although some of them might be mere 
emotional. It can also happen that the original problem does not allow for the 
exactitude which is suggested by the mathematical solution. 
On the whole the 'translation' described above boils down on recognising prob
lem types and establishing standard routines. As soon as we choose to teach 
'mathematics as an activity', problem-solving gets another meaning. It becomes 
problem-centred, that is, rather than using a mathematical tool, the problem is the 
proper aim. Although, even if interpreted as an exploration, problem-solving 
passes through the same three stages of 
- describing the context problem more formally; 
- solving the problem on this (more or less) formal level; 
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- translating the solution back; 
the character of these activities is now fundamentally different. Rather than aim
ing to fit the problem into a pre-designed system, one tries to describe it in a way 
to come to grips with it, and this happens in particular by means of schematising 
and by means of identifying the central relations in the problem situation. Rather 
than using commonly accepted mathematical language, this description may be 
sketchy, using among others self-invented symbols. 

A student's description of the number of tables needed for 81 parents. 

The description does not automatically answer the question; it rather simplifies 
the problem by describing relations and distinguishing matters of major and mi
nor importance. Solving the problem as it is stated at this more or less formal lev
el differs greatly from applying a standard procedure. It is a matter of problem 
solving as well. Translating the final solution does not differ that much from 
translating a solution which is produced by a standard procedure. But translation 
and interpretation are now easier since the symbols are meaningful for the prob
lem-solver, who is the one who gave them their meaning. 

solving 

context problems 

An instructional programme, full of this kind of problems, creates the opportu
nity for students to learn mathematising context problems. 
Numbers of similar problems in a row will evoke another process. Problem de
scriptions may develop into an informal language, which in tum may evolve into 
a more formal standard-like looking language, thanks to a process of simplifying 
and formalising. This is again a process of mathematising, albeit stretching over 
a longer period of time. A similar thing happens to the solving procedure. In the 
long run solving some kind of problems may become routine, that is, procedure 
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condensed and formalised in the course of time. In this way genuine algorithms 
can take shape. 

1I 1I 
1f solving 

1I 

context problems 

This then is a learning process by which the formal mathematical system itself 
can be (re-)constructed. 

formal mathematical system 

mathematical 
language algorithm 

1I 1I 
1f solving 

1I 
describing 

context problems 

In Treffcrs (1987) the latter process, focusing on the mathematisation of mathe
matical matter, is called vertical mathematisation, as distinguished from horizon
tal mathematisation, which is mathematising context problems. 
These two basic models, the 'formal model' (the one with the applications after
wards) and the 'integrated model', may be used to compare the American infor
mation-processing approach with the Dutch realistic approach. 
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2.5 Information-processing 
The ideas presented by information-processing psychologists like Resnick, 
Greeno, and others perfectly match the 'formal model'. From the start onwards 
the instruction focuses on the concepts and skills as defined by tradition, that is, 
in their most sophisticated form. A refined form of task analysis is used to divide 
the learning task into smaller components, in order to simplify the learning proc
ess. In information-processing theory one tries to design detailed models for the 
description of solving procedures, appropriate to simulate problem-solving be
haviour by computer programmes. These models, however, are by far too refined 
to be implemented in instructional programmes, though they can be helpful in in
structional design. 

Resnick, for instance, was inspired by the models of Brown and Van Lehn 
(Resnick & Omanson; 1987). Refined models may draw the designer's attention 
to tacit knowledge which might have been overlooked otherwise. 
Most of the actual instructional designs based on information-processing theory 
are making use of concrete models. To teach the column algorithms, for instance, 
one almost always uses Dienes blocks.2 This leads to the following procedure in 
the case of long division (Borghout<;-Van Erp; 1978). The dividend (78) is rep
resented by rods and cubes. The children divide the number of rods (7 + 3 gives 
2 rem.I). The remaining rod, or rods, (I) are changed into cubes and combined 
with the cubes that have been present before (10 + 8 = 18). And then the number 
of cubes is divided. 
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This procedure can be written down in the standard form of long division. 

D □ D □ 
3 V 7 8 " 2 6 

6 

1 8 

1 8 

0 

Obviously this is not a procedure that reflects many real life situations. For in
stance, think of the problem of the 81 parents to be seated at tables for 6. If we 
start representing the 81 parents by (the equivalent of) 81 Dienes blocks, we end 
up with the paradox of 13 blocks, which are now to represent 13 tables! 
Moreover, it is not just the ratio division that causes trouble; context problems 
involving magnitudes fit this model as little. Since it does not cover all possible 
real life situations, supplementary instruction of applications becomes a neces
sity. Thus instruction is divided into first teaching a fixed model procedure and 
then teaching its applications, which strongly relies on the recognition of seman
tic structures in word problems. 
Information-processing psychologists have listed all kinds of word problems ac
cording to skills or concepts required for their solution, in order to support the 
instruction of applications. Next to this, expert and novice behaviours are com
pared to find directions for the development of effective solving procedures. The 
analysis of word problems produced distinctions in semantic structures, like the 
well-known classification of addition and subtraction word problems by 
'change', 'combine/separate' and 'compare' as main categories (sometimes sup
plemented by 'equalise'). One usually tries to support the recognition of the dif
ferent semantic structures by diagrams. Greeno (1987), for instance, refers to 
Lindvall's models in the case of addition and subtraction, and to Shalin's in the 
case of more complicated word problems. 
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Change Increase 

Comb:ne 

Compare 

~ 
~ 

Cha,;ge Oocrease 

Separale 

Compare 

:~ :~mur~ 
Equaf1Ze Take Away Equabze Ad;j On 

Diagrams for illustrative word problems in Lindvall' s system 

Shalin's system is based on four types of quantities, which are represented by 
symbols, indicated as different shaped 'hats': 
a. extensive quantities, as in 'Ann had 5 pencils', represented by rectangular 

hats; 
b. differences, as in 'Dann has 2 more kites than Rick, represented by triangular 

hats; 
c. intensive quantities, as in 'Tom put 6 books in each bag', represented by 

rounded hats; 
d. multiplicative factors, as in 'Sue had 3 times as many pencils as Ann', repre

sented by trapezoidal hats. 

(a) (b) (C) (d) 

These symbols enable one to design representations of a problem like: 
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Dr. Wizard has discovered a group of monsters living in a dark cave in South 
America. 
lie has counted 7 monsters, and there are 8fingers on each monster. 
If there are 4 fingers on each monster's hand, how many monster hands did 
he find? 



7'8 

monsters 

• 7 

ftngers 

(7' 8)14 

5614 

♦ 14 
'-----' 

Curiously enough, the simplest solution is lacking: eight fingers on each monster 
and four fingers on each monster hand implies two hands on each monster, so 
there arc 
2 x 7 = 14 hands. 
To be sure, one also tries to establish metacognitive skills and strategies. How
ever, most of the students do not know how to apply general heuristics. Lesh's 
research (1985), for instance, shows that the applicability of heuristics is strongly 
affected by the availability of domain specific knowledge. Therefore it is not so 
surprising that Schoenfeld (1987), for instance, abandoned the idea of general 
heuristics, and changed it for the idea of 'mathematical people'. He states that 
one can teach problem-solving effectively by creating a microcosm of mathe
matical culture, which means an atmosphere where mathematics is the medium 
of exchange, where one talks about mathematics; explains it to one another; 
where one shares solution processes including false starts; discusses solutions, 
and so on. In other words a manner of working closely related to the realistic ap
proach. 

2.6 Didactical phenomenology 
In virtue of the 'formal model' the applications follow upon the subject matter 
as taught by abstract reckoning within the formal system. Freudenthal (1973, 
1983) opposed this order, which he calls an anti-didactical inversion How did 
humankind gather its mathematical knowledge? By studying reality in the first 
place! Mathematics developed by generalising regularities, developing and for
malising notations, and algorithmising solving procedures of recurring practical 
problems. From applications mathematics evolved into a formal system, but at 
present one tries to teach children the formal system first and applications after-
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present one tries to teach children the formal system first and applications after
wards - an inversion which Freudenthal rightfully calls anti-didactical. 
As an alternative to this inverse order Freudenthal suggests to follow the original 
one with the help of didactical phenomenology. Didactical phenomenology de
scribes concept attainment, or as Freudenthal prefers to say, 'the constitution of 
mental objects' based on a phenomenology. He deliberately uses the expression 
'constitution of mental objects', which according to him precedes concept attain
ment, and can be very effective even if this final step in the learning process is 
not taken. Didactical phenomenology presupposes that one chooses those phe
nomena which stimulate the student to form the mental objects one is aiming at. 
This sharply constrasts with approaches where one uses concrete embodiments. 
We just mentioned the fact that mathematics has evolved from mathcmatising re
ality. Didactical phenomenology is investigating its roots by analysing the way 
mathematical concepts function in reality. Context problems are found to devel
op 'intuitive notions', which are consolidated in mental objects and in tum form 
the base for the concepts to be developed. The final concept attainment has to be 
established by a reinventing process. 
The word reinvention refers to the idea to take the mathematics in the way it 
arose in history and still arises, as a model for instructional programmes. This 
means, for instance, that it can pay to study the history of the column algorithms 
before one starts designing an algorithm course, thus expecting clues to help chil
dren to develop the algorithms on their own. The abacus is an example of such a 
clue: a tool to learn the column algorithms for addition and subtraction. Shortly 
we will reconsider the reinvention principle, but first let us take a look at the in
itial phase of this process. Here context problems arc used to bridge the gap be
tween the students' experiential knowledge and the intended subject matter. To 
clarify it we choose some phenomenological aspects of multiplication. 

2.7 Multiplication 
Didactical phenomenology strives to establish a broad base for the concepts and 
skills to be developed. The need for such a broad base became clear in the case 
of long division. We elaborated on the distinction between distribution and ratio 
division, and we mentioned the rectangular model, which to some extent inte
grates both conccpl~. It is important for learning multiplication and division be
cause iL'> validity extends to operations with magnitudes, where it functions as a 
paradigm for the calculation of areas. It not only supports concept attainment in 
multiplication but also the acquisition of the multiplication tables. Ter Heege 
(1985) showed that most children do not bluntly memorise the multiplication ta
bles in order to know them by heart; they rather invent strategics to derive more 
difficult products from easier ones. Spontaneously they use strategics like: 
- changing order [ 3x6=18, because of 6x3=18] 
- doubling [ 2x6=12, therefore 4x6=24] 
- halving [10x6=60, therefore 5x6=30] 
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- adding 
- subtracting 

[ 2x6=12, therefore 3x6=18] 
[10x6=60, therefore 9x6=54] 

According to the realistic conception the students' own solving procedures might 
be useful to start learning sequences with. Often the students' spontaneous be
haviour anticipates on skills and concepts lying ahead. Designing instructional 
programmes on the strength of observations with regard to solving procedures, 
such as invented by the children themselves, can be seen as a further refinement 
of the reinvention principle. 
The reinvention principle not only recommends the history of mathematics, it 
also refers to a particular kind of learning: Following in a sense the historical 
learning path, students reconstruct the mathematics discovered that way. Of 
course, the idea of (re-)constructing mathematical knowledge is more fundamen
tal than the historical aspect. Freudenthal favours the reinvention principle be
cause it is also the way of most adult mathematicians to get familiar with new 
mathematical ideas. History of mathematics can help to find suitable learning 
paths, but as now understood, the students' self-invented solving procedures also 
indicate possible routes. In the case of fractions, this approach was successfully 
elaborated by Streefland (1988). 
To stimulate the development of such strategies as discerned by Ter Heege, one 
can employ context problems based on the rectangular model such as, for in
stance1: 

How many tiles are there? 

This question may be posed long before the students understand 9 x 8 as a mul
tiplication. All kind of solution procedures will be put into play: 
- just counting the tiles (including the invisible ones); 
- compound counting: 9, 18, 27 .. , or 8, 16, an so on; 
- doubling: calculating one row, two rows, four rows, ... ; 
- subtracting 8 from 10 x 8. 
By its reference to tiled pavements, counting tiles is a realistic problem, and 
meaningful for students. That is one side. On the other hand the rectangular 
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model as concretised by the tiled pavement provides the operation with a partic
ular meaning - one particular meaning, which has to be supplemented by many 
other situations. Yet here we are concerned with the self-reliant development of 
the rectangular model by the students. It is the way in which the context problem 
bridges the distance between informal knowledge and mathematical ideas. 
The afore mentioned informal strategies may evolve into strategies for mental 
arithmetic involving larger numbers. In the end this will lead to the column algo
rithm, which may be seen as an organised form of skilful reckoning. Long addi
tion, with short-cuts by multiples of ten and hundred, can be the onset of an al
gorithm course for multiplication: 

26x74= 74 
74 
74 
74 
74 
74 
74 
74 
74 

?.L .. 740 
74 
74 
74 
74 
74 
74 
74 
74 
74 

?.L .. 740 
74 
74 
74 
74 
74 
74 

To learn the algorithm for multiplication (as well as for long division) a lower 
order repetitive operation is chosen to start with. There is less danger of one
sidedness than in the case of a structuralist approach, firstly, because the students 
have already become familiar by themselves with a broader concept of multipli
cation, and secondly, because they may always fall back upon more informal 
context-bound solving procedures. The realistic approach does not demand for 
standard procedures, neither in the beginning nor at the end of a learning se
quence. 

2.8 General attitude towards applied problems 
In realistic mathematics instruction the domain specific solving procedures func
tion as a base for the learning process. Semantic structure, such as discerned by 

28 



cognitive psychologists, is not ignored. One does not, however, value their ex
plicit recognition as a prerequisite for applying a standard procedure. One relies 
on phenomenological structures as a means to simulate domain specific solving 
procedures. Only after a while will students learn that these procedures are inter
changeable. Meanwhile the students are stimulated to improve their own solving 
procedures, to shorten, to schematise and to generalise them. In this way the final 
goal, a standard procedure, is reached, and the applicability of this knowledge is 
guaranteed. 
However, there is more to it. Not only is a solid base for concept attainment laid 
by this approach, it also helps generate a general attitude towards applied prob
lems. While heuristics and metacognition promote the application of some algo
rithm (or a combination of algorithms in the information-processing approach), 
the realistic approach consequently capitalises 11pon the students' own ideas. So 
the students will develop the attitude to consider it as self-evident to have a try, 
to use one's head, and to look what can be done with the domain specific knowl
edge available. 
Realistic mathematics instruction implies estimation wherever it is meaningful, 
and the use of common quantitative knowledge about reality, for instance, to un
cover errors in cuttings from newspapers. As an example take the journalist who, 
looking for a fair method to compare the number of Olympic medals earned by 
several countries, performs some calculations and commits some errors! 

Let us restrict ourselves to the Netherlands, with about 14 millions of citizens, against 

the USA with more than 3 billions (3 x 109), which is roughly two hundred times as 
much. The area of the Netherlands is something like 40,000 square metres, against the 

USA's 33,000 square kilometres, nearly a thousand times as much. 

Though readers might be expected to know that, though small, the Netherlands 
is not as small as two football-fields, that the number of citizens of the USA can
not possibly be three billions as there are no more than five billion people on the 
whole world, and how to convert m2 into km2, there will not be many who pay 
attention to such errors. Indeed, it requires an investigative attitude to look for 
them, which unfortunately is undermined systematically by standardised mathe
matics instruction. It is part of what Schoenfeld (1987) refers to as the 'hidden 
curriculum': Students get a wrong idea of what mathematics consists of, and 
how to solve problems. As an example he uses a problem (not unlike ours on bus
es) set in the NAEP secondary mathematics exam: 

An army bus holds 36 soldiers. 
If 1128 soldiers are being bused to their training site, 
how many buses are needed? 

Seventy percent of the students chose the right algorithm and performed it cor
rectly. However, on the question how many buses are needed, 
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29 % said: '31 remainder 12', 
18 % said: '31 ', and 
23 % gave the right answer: '32'. 

Most of them just picked the numbers from the text, performed the algorithm and 
wrote the answer down, without bothering whether it made any sense. 

2.9 Constructivism 
There is some resemblance between the realistic approach and didactical phe
nomenology on the one hand and constructivism on the other. So a comparison 
between both of them may be useful: on which points do they agree, and on 
which do they disagree? 
Philosophically constrcutivism is based on the idea that it is impossible to know 
something like an 'objective reality'. As a matter of fact, our knowledge of real
ity consists of theories about reality, which notwithstanding our eagerness for co
herence and logic do not imply their own truth nor exclude alternatives. Con
structivists consider 'misconceptions' or 'alternative conceptions' as mere con
sequences of alternative theories. 
Against this background the use of concrete material is criticised. Cobb (1987), 
for instance, insists on distinguishing between an 'actor's and an observer's point 
of view'. One should try to look through the student's eyes. Concrete represen
tations remain problematic as long as children keep seeing them as concrete ma
terial, rather than such as intended by the adult, that is, in their relationship to 
mathematics. According to Cobb, the trouble is due to the double meaning of 
'representation': both mentally, that is, in the student's head, and didactically, 
that is, the concrete material. The lack of a sharp distinction between both of 
them is symptomatic for the partiality of adult observers who, being familiar with 
the mental representation, are able to 'see' it in the concrete material. Cobb re
ports an experience of Halt's, who at the start was quite enthusiastic about Cui
senaire rods. The striking relations between this material and the world of num
bers would allow a beautiful entrance to the world of numbers, he thought. How
ever, 

The trouble with this theory was that Bill and I already knew how the world of num
bers worked. We could say, 'oh, the rods behave just the way numbers do.' But if we 
hadn't known how numbers behaved, would looking at the rods have enabled us to 
find out? (Quotation Cobb; 1987.) 

Unless internal and external representation are discerned, the time order may be 
mixed up: the mental representation which has to be formed, is badly needed in 
order to mentally interpret the concrete representation, indeed. 
The idea to distinguish between the actor's and the observer's point of view is 
inspired by constructivist epistemology. The view that everybody holds one's 
own theories about reality, led Cobb to realising that the researcher's reality dif
fers from the student's. Children build their own theories about reality; which ed-
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stood this way, realistic instruction theory may be seen as its complement The 
idea of reconstruction of mathematical knowledge unites both of them. Realistic 
mathematics instruction may meet Cobb's fundamental criticism on the implicit 
observer's point of view. The ideas of the student are respected by taking their 
informal solution procedures seriously. This seems to be the proper way to pre
vent 'misconceptions'. However there will always be a certain tension between 
'following' and 'guiding'. 
It is at this point that constructivism and realism differ. Constructivism in the 
sense of Confrey (1987) is essentially a kind of appreciation of theories, such as 
developed by young children. As far as comments on instruction are made, it 
seems that an epistemological and a normative point of view are interconnected: 
the students' theories should be valued as equal to the teacher's, which implies 
that students be free to choose the direction in which they tend to develop. 
Realistic educators are more careful, they do try to steer the theory-building of 
the students. By means of appropriate assignments desirable developments are 
provoked, adjustments take place thanks to social interaction and discussions, as 
well as by means of context problems that lay bare the weak points of alternative 
theories. In other words, realistic mathematics instruction focuses on carefully 
planned long-term learning processes where one tries to do justice to the stu
dents' ideas. 

2.10 Conclusion 
As a conclusion let us sketch the realistic approach to the main issues in instruc
tion theory: 
- First, applications, domain specific knowledge and strategies: Applicability 

is inherent to the curriculum by virtue of the stand on context problems. Let 
us add that in the measure students feel at home in the mathematical field, 
mathematics itself becomes a context! 
Second, models: Rather than being offered right away, they arise from prob
lem-solving activities. So they can function to bridge intuitive notions and 
formal mathematical objects. 
Third, construction: With regard to the question whether students should con
struct their own knowledge or whether one should rely on explicit instruction 
and feedback, realists take the position that the construction process can and 
has to be guided by means of special assignments, free productions and inter
action. 

- Fourth, social versus individualised learning: The question may be answered 
by a reference Schoenfeld' s idea of 'mathematical people'. 

- Fifth, complexity of learning: As opposed to tasks analysis, the approach is 
rather holistic. As reflecting the complex reality, context problems are to get 
learning strands intertwined, which also serves the development of intelligi
ble solving procedures and relational understanding. 
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Notes: 
1. Example(s) taken from a Dutch textbook series: Gravemeijer, 1983. 
2. See also Labinowitz (1985) for problems with Dienes blocks. 
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3 Free Productions in Teaching and Learning Mathematics 

Leen Streefland 

3.1 Introduction and survey 
The question I wish to tackle in the present paper is1: How to influence children 
to produce by themselves - albeit under guidance - their mathematical abstrac
tions. (cp. Cobb, 1987.) 
In order to answer this important question I will deal with successively: 
- children's own - free - production in mathematical instruction-what does it 

mean?(3.2); 
- functions of their own production in the teaching/learning process, with ex

amples (3.3); 
- own productions in developmental research after reconstructible instruction 

(3.4). 
A brief reflection will conclude the exposition (3.5). 

3.2 What is own production? 
In productive mathematics education children, guided by their teachers, con
struct and produce their own mathematics. The pupils' mathematical activity ex
presses itself in their construction and in the production resulting from reflection 
on the constructions. Treffers (1987, p.260) has introduced this distinction, 
which according to himself is no matter of principle. Free production is rather the 
most pregnant way in which constructions express themselves. What, however, 
is own production? In order to answer this question we shall look out for the pre
conditions and circumstances under which productions emerge or may emerge 
in instruction. 
By constructions we mean: 
- solving relatively open problems which elicit- in Guilford's terms - divergent 

production, due to the great variety of solutions they admit, often at various 
levels of mathematisation; and 

- solving incomplete problems, which before being solved require self-supply-
ing of data or references. 

An example of the first: How to divide two bars of chocolate among four chil
dren? 
An example of the second: A radio message on a 5 km queue at Bottleneck 
Bridge: How many cars may be involved? 

The construction space for free productions might even be wider: 
- contriving own problems (easy, moderate, difficult) as a test paper or as a 

problem book about a theme or for a course, authored to serve the next cohort 
of pupils. 

An example, say, for grade one: Think out as many sums as you can with the re
sult five. 

33 



Finally there are border problems, that is, of constructive character but with a 
strong productive component, which require devising symbols, linguistic tools, 
notations, schemes, or models. In our illustrating problems stress is laid on the 
various functions own productions can have in the teaching/learning process (as 
well as in research). 
In fact, a production problem can involve more than one of these functions. The 
division according to functions is again a matter of stress rather than of principle. 

3.3 Functions of own production in the teaching/learning process 
3.3.1 Preliminary survey 
If children's learning is to be expressed in their own production, its various func
tions have to be viewed under the aspect of instruction, that is, according to their 
didactical value (though of course from the learner's side). Without aspiring at 
completeness, we will distinguish the following functions: 
- grasping the connection between phenomena in reality and the matching tool 

of description and organisation (horizontal mathematising) (3.3.2.); 
- seizing the opportunities of continued organising and structuring of mathe

matical material (vertical mathematising) (3.3.3.); 
- uncovering learning processes, and reversing wrong trends (3.3.4.); 
- producing terminology, symbols, notations, schemes, and models serving 

both horizontal and vertical mathematisation (3.3.5.). 
Each of these functions will be illustrated by examples and commented on. In all 
cases it will appear, that being productive in the mathematics lesson provokes 
both reflection and anticipation on the teaching/learning process. 
The various functions will finally be considered within the broader context of 
course construction and developmental research (3.4). 
Finally some remarks will be made (3.5). 

3.3.2 Grasping problems 
Example: 'The size of The Netherlands' (after Treffcrs, 1987), from the domain 
of calculation and meansuration by estimate: 

Somebody affirms that the area of The Netherlands is 36,842 square meters, ac
cording to Larousse Encyclopedia, he says. What is your comment? 
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We will give an impression of the course of a lesson with 11 to 12 years olds who 
have received traditional (rules oriented) instruction, although in their last year 
(grade six) a few richer problems happened to emerge in the lessons. 

The pupils start working while the teacher walks around, assists groups of pupils, 
and afterwards conducts the retrospective discussion. 
At the start of the lesson the teacher had a brief talk with Mar: 
Mar: 'Then I should first know what is a square meter.' 
Mar: 'I do know that a football-ground is a hectare.' 
T: 'What's your size, Mar?' 
Mar: 'One meter seventy. 
T: 'And now a square meter. Pay attention to 'square'. 
Mar: 'I see. It is four times a meter (indicating a square). 
T: 'This desk, is it as big as a square meter? (in fact it is 1.30 m. by 0.70). 
Mar: 'No, it isn't a square, so it is not a square meter. 

Follows some explanation. Mar is progressing but time and again new obstacles 
arise; for instance, when The Netherlands is modelled into a rectangle of 200 km 
by 300, and the area should be calculated. The estimated dimensions are to the 
point but 200 x 300 is done by column arithmetic. Mar's mathematical activities 
oscillate between two extremes: intelligent estimating and thoughtless calculat
ing. 

Most of the pupils appear to know very well what size a square meter is, and un
derstand decently what is area, but they still lack the mathematical attitude of try
ing a multiplication related to the given area, or starting at the other side, that is 
to make an estimate of the size of The Netherlands on the strength of available 
experience. 
They reproach the teacher walking around: 'It is so big a number that one cannot 
imagine it, so there is nothing to comment.' 
They are given a hint; the size of a garden or so. It is sufficient to put them on 
the right track. In due course everybody is adjusted to explore whether the given 
number of square meters is possible. In retrospect the pupils deliver the comment 
(briefly summarised): 
- If it were true, hundreds of people would live on a square meter because mil

lions are living on the approximately 37,000; so that is impossible. 
- Upwards of a 36,000 square meters is like a strip long 36 km and wide 1 m, 

and that is rather like a path through The Netherlands. 
- The given number of square meters is not much more than a rectangle of 200 

meter by 180, that is about six football-grounds-it is good for Gulliver's Lil
liput. 

- The Netherlands is about a rectangle of200 km by 300 (cf. Mar's estimation), 
thus 36,842 square meters cannot be right. 
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All these comments are discussed. Almost everybody is able to follow the var
ious ways of reasoning and to compare them with one's own solution. The last 
among these comments offers the teacher the opportunity to ask for the factual 
origin of the error. The whole group agrees that it should have been square kilo
metres. Then the teacher raises the question: How could right 36,842 square kil
ometres have come out? 
In a final discussion objections are summarised: What about rivers, lakes, hills? 
Do they belong to the given area? 

What about the tides? Isn't our country larger at low tide than at high tide? How 
big can the difference be? Isn't the area to be considered as a variable? 
Finally the crucial question: 'Wouldn't such a precise number be possible on the 
strength of some model of The Netherlands?' 
The teacher herself explains things: the fixed low tide line and the fixed map 
model define the calculation. In detail this model differs from reality. That then 
is how the size of The Netherlands is verified. 
The foregoing was a good starting point. This is proved by a newspaper cutting 
concerning the classification of countries according to the number of medals they 
scored at the Olympic Games of 1984. 

The classification obtained by this method has functioned for a certain time as shad
ow classification, never included into official tables. It is, however, attractive to have 
a closer look to this equivalising formula. 
Since it requires some arithmetic, let us restrict ourselves to The Netherlands. The 
country has about 14 million inhabitants, versus the 3 billions of the US, that is two 
hundred times as much. The area of The Netherlands is, say, 40,000 square meters, 
versus the 33,000 square kilometres of the US, that is thousand times as much. This 
weighed against each other yields for The Netherlands a population coefficient one 
fifth of that of the US. 

In a test 312 future primary school teachers were asked a comment on this news
paper cutting. The scores were both revealing and distressing: 
Correct : 18 
Wrong : 191 
No answer : 103 
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Many students performed their calculations exactly by means of column proce
dures. This indeed was the most essential shortcoming which could be observed, 
because this resulted in the production of failures which were not in the article. 
Other mistakes were sloppy arithmetic and the wrong processing of magnitudes 
and big numbers (Jacobs,1986). 

Remarks: 
Obviously the future teachers (as well as some of the pupils of the former exam
ple) lacked the notion that and how numerical data are anchored in reality and, 
with regard to measuring, did not have to their disposal reference points such as 
the size of a football-ground, the size of a country, the number of inhabitants. 
Mathematics education should aim at developing personal scales of familiar and 
lived through measures such as: 
- the distance between home and school, also measured in time, walking and 

biking; 
- one's own weight and stature; 
- one's walking and biking distance per hour; 
- the height of a house, a twenty stores building; 
- the size of the playground, a football-ground, and so on. 
Such personal scales, the richer the better, form reference frames for solving 
problems of the kind as presented. 

What do the foregoing examples mean in the context of realistic mathematics ed
ucation? Of course they have a merit of their own but in the present context they 
have been adduced because of their constructive and productive value. 
Educated estimates and implicit experiential data made explicit, strengthen the 
grasp on problems, which is one of the functions of construction and production. 
Solving means tying connections between the real and the arithmetical world by 
means of mathematical modelling. 
Growing such connections helps developing a mathematical attitude, in particu
lar horizontal mathematising, that is mathematising real world situations 
(cf.Treffers,1987). Almost all of the 312 future teachers lacked that mathemati
cal attitude required to clean the mess of data in the newspaper cutting. 
This proves that the environment where they learned mathematics differed much 
from that of the school lesson. 
The spirit of the lesson is comparable with the direction in which the problem 
solving courses of Schoenfeld (1987, p.213) have been developed: 

'With hindsight, I realize that what I succeeded in doing in the most recent versions 
of my problem solving course was to create a microcosm of mathematical culture. 
Mathematics was the medium of exchange. We talked about mathematics, explained 
it to each other, shared the false starts, enjoyed the interaction of personalities. In 
short, we became mathematical people.' 
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3.3.3 Seizing the opportunities of continued organising and structuring of math
ematical material. 
Pupil's own constructions and productions mirror the teaching/learning process, 
both for the teacher and the educational developer and researcher. Here are two 
examples. 

The first 
Grossman (1975) reports about unexpected surprises caused by production tasks. 
She presents a few examples of work with first graders. We quote two of them 
and include the teachers' comments (ibid. p.14-15). 

'Mark was having trouble with arithmetic until I gave this assignment. He amazed 
me and he proved to himself that not only he could do arithmetic but that he couldn't 
stop doing it. (He handed in two extra papers on his own on subsequent days.) The 
other children loved the activity too. My feeling was one of constant amazement that 
they could do it all.' 

M<>- rk . Decen?ber 11,/ 1 J 2 

/'HI 20--17 
15-12 21- ,a 
16- 13 22 -,~ 
17-11\' ~-=.;~ 
18-,, :-:,- ::u. 
IH6 fP_ - ~ 

IOooo-mS' 

'I knew Jon was bright because he understood so well all that I taught in my struc
tured lessons, whether I followed the syllabus or went just a little beyond it. Howev
er, I never suspected that he could handle number combinations in hundreds and 
thousands. There I was, teaching combinations up to twenty, limiting my expecta
tions and the children's ceilings.' 

Remarks: 
The teachers' comments show that both boys had amply transgressed the limits 
of the scholastic domain. Mark's work still reveals traces showing how he re
flected on his activities. After a hesitating start where he scanned the available 
arithmetic he screwed up courage, became self-conscious, wrote bigger, and 
sailed a fixed course through the system he built while constructing his problems. 
He transgressed the boundaries of the arithmetic lesson and produced his own 
structure. At home he continued intensively - the same Mark who was supposed 
to have problems with arithmetic. 
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And then Jon! How much curtailed must he have been in his possibilities! He an
ticipated on sums, three grades higher in the curriculum; up to 10,000-9,995 = 5! 
Like Mark he worked systematically. Only his written report was a bit untidy. 

Both of the boys reflected on what they had learned within the number system, 
and consequently they anticipated on the future of the teaching/learning process, 
the one farther than the other. The teachers were hold up the mirror of their in
struction. Especially Mrs.S. (Jon's teacher) was conscious of this fact. 
What would pupils' own constructions and production have mirrored in rich con
texts of realistic instruction? The answer to this question can be found in num
bers of publications (cf. Van den Brink, 1987). 

Second 
A course of long division can be based on the principles of clever computation 
and estimating (cf. Treffers, 1987). Reference should also be made here to 
Gravemeijers contribution about contexts and the examples he gave. So I will 
confine myself here to a brief impression concerning the development of an al
gorithm for long division. Let the start be 

'342 stickers are fairly distributed anwngfive children; how many does each 
of them get?' 

In such a situation distributing shall be organised. First the stickers are handed 
out piecewise, but soon bigger shares are dispensed. The written report reflects 
the distributing pattern, which indicates the distribution process. Subsequent 
steps on the path of mathematising are predesigned. 

_ 10 ,o 10 •0 •o •• 
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In the second phase the children are soon satisfied with noting down just one col
umn only - 'all get the same, indeed'. Other contexts are being introduced, 
among which that of grouping. After about 15 lessons the children work on dif
ferent levels. 

,, 1 ~ 
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'1 J ~ 
~ .. 
t J: \ c., 

l.L<u.. 

''!i(, 
~ ,. 
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"! oo /00 

l~l tcl 

In the third phase the connection is made to decimals and fractions. Estimating 
according to powers of 1/10 becomes central but the procedure does not change 
essentially. Context dependent answers on divisions with remainder are not ne
glected for instance interpreting an outcome with remainder as Gravemeijer 
showed already. 
At crucial points in the course it is asked to invent problems and to solve them 
by a slow long-winded manner as well as by a quick and short one - the pupils 
should learn to reflect on their learning process and to anticipate on even shorter 
procedures. 

Remarks 
With regard to contents the course oflong division, sketched above, can be char
acterised as follows: 
- a process of mental computation and estimating, integrated in context prob

lems; 
- a process of progressive mathematising arithmetical methods, in the present 

case by means of schematising and shortening. 
Such an approach of division starts with the informal methods of the children, 
which are organised and structured. Construction and production play an impor
tant part in the process of progressive schematising and shortening, which are as
pects of progressive mathematising. During the teaching/learning process the so-
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lutions of applied problems are continuously subjected to inventarisation. Con
tinuously the question of possible shortening is raised. The procedures arising in 
the course of shortening function in the course to be followed: beacons for those 
who nearly reached the same level of mathematising. The ultimate standard al
gorithm of long division is predesigned in this process as the utterly shortened 
procedure. 
In a sense this mirrors the historical process of algorithmising long division (as 
well as the other operations on whole numbers; cf. Menninger, 1958). In fact the 
present course was at least practically inspired by the view on the historical de
velopment. 
Comparative research undertaken in our country has proved that this approach is 
by far superior to the traditional one. An experimental group attained in half the 
time a result almost twice as good as a control group which had been taught tra
ditionally (cf. Rengering, 1983; Treffers, 1987). 

exp. contr. 

difficult divisions 85% 45% 

(zeros in dividend or divisor, etc.) 

applications 70% 45% 

Scores in long division - traditional method vs. progressive schematising. 

The results on the traditional method have been confinned by other research, also 
in other countries. 

3.3.4 Uncovering learning processes and reversing wrong trends 
We have already noticed the diagnostic value of own constructions and produc
tions, mirrors as it were, illustrating the teaching as well as the learning process. 
At present we will consider the diagnostic value for the learning process, in par
ticular cases where constructions and productions reveal wrong ideas and mis
conceptions. 

Example 
The class had elaborated and described two distribution situations (cp. Streef
land, 1984; 1987). It was quite early in the teaching/learning process, after a 
number of suchlike activities in the past. The teacher judged it the just moment 
to proceed to the first task of free production in this domain. The pupils were 
challenged to think out such 'number sentences' as had been met in the distribu
tion situations, that is, with halves, fourths and - for the courageous ones -
eighths, with 'plus' and 'minus', maybe even with 'times', sums matching dis
tributions. 
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Share three chocolate bars among four children: 

Distribution performed and dcs~ribed. 

Each will get ¾ (of a bar) + 7 ( .i + { 

3 X _!. 
4 

3 -:;,or 

Example of a distribution situation 

Michael produced the following: 

Michael's work is typical for - world-wide-mistakes, I called it 'N-distractors' 
(cf. Hart, 1981; Hasemann,1987; Streefland, 1984; and many others). 

Remarks 
The diagnosis is clear.The mistakes are the consequence of yielding to the temp
tation of whole numbers and their rules. It shows that the constitution of the men
tal object 'fraction' has not progressed far enough to resist this temptation. Nu
merators and denominators were still operated upon separately; their conceptual 
interdependence was neglected. 
The task had been set too early, at least for Michael. The concrete sources had 
been switched off prematurely. Stating this goes to the heart of the function here 
envisaged. In their own constructions and productions pupils can disclose their 
wrong ideas and misconceptions. In other words: Own constructions and produc
tions unveil the - possibly wrong- personal theoretic basis of reflection and an
ticipation in the teaching/learning process. This enhances the diagnostic value of 
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the material. A correct diagnosis promises successful remediation both of learn
ing and teaching. 
As a matter of fact this is closely related to ideas in Sinclair's and Vergnaud's 
PME-XI addresses at Montreal. Indeed, what has happened? Michael reckoned 
among others 1/4+ 1/4=2/8. 
Remediation can start with eliciting a conflict. In the concrete (imaginable, 
meaningful) environment a new solution can be tried: Four children share two 
pizzas.Make a distribution. How much does each of them get? The solution may 
be e9 E£) (one fourth and one fourth are two fourths, which equals one half). 
There are children who do not experience this as a conflict (cf. Streefland, 1984; 
Hasemann, 1987). In these children's conception the result (still) depends on the 
solving method, that is, on the level at which the solution is conceived (concrete 
vs. symbolic). This level dependence is an example of what Sinclair (1987) 
named a 'normative fact', and Vergnaud (1987) 'theory in action'. 

3.3.5 Producing terminology, symbols, notations, schemes, and models serving 
both the horizontal and vertical mathematisation 
Children learning mathematics can, by their constructions and productions, con
tribute to its working apparatus. 

Example 1 
Madell (1985) reported about the personal algorithms for subtraction, developed 
by pupils of the Village Community School in New York. Their 'natural', infor
mal methods of performing the operation had the following characteristics: 
- both working (partly) per column and from left to right; 
- working with position-values in stead of the numbers per position; 
- working with deficits and borrowing from tens; no child applied the standard 

procedure of borrowing; 
- working along the lines of proceeding abbreviation. 
Let us have a look at an example, reflecting some of the features just mentioned. 

8371 
-375£J 8000 - 3000 

100 - :100 
5000 - '100 

70 - 50 
1H:,oo + 20 

q - 1 
'1~20 - 3 

(quoted from Labinowicz,1987, p.381). 

5000 
'100 
q~oo 
20 
""20 

3 

"" 17 

How con you ~•plain fhe 
cowtbir,rd u~o9.# or Oddi tion 
Ond .subtt'oct,on in St~phen'$ 
,.,~lltod! 
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This own invention of column subtraction can be used in the development of a 
standard algorithm, deviating from the usual one as has been showed in chapter 
one. 
Even young children entering the set of negative numbers is no illusion. The next 
example illustrates the awareness of an eight years old of the difference between 
'minus' representing the operation subtraction and 'minus' indicating the nega
tive state of the outcome. 

Remarks 

3 8 4 20 

; 1' 8=~B 
-~ - 3 "'-r;- .Zo + 9 ;:::__z~ 

i+B~ ~ 
3- a =-rm1~ s 

The self-constructed notation served the development of an algorithm for col
umn subtraction. While working from the left to the right, it is stated that 8,000 
minus 3,000 equals 5,000, 300 minus 700 is 400 short (notation ·4 with the back
ground reasoning that subtracting 300 is still possible, with the result 0, and sub
tracting 400 more brings -4 at the place; and so on.) 
The deficits can also be indicated by upper dashes, parentheses or circles (cf. 
pupils work). 
For the transition from 5423 to 4617 money can be used as a meaningful posi-
tional material: property 5,000 debt400 ........ This is a way one can use children's 
informal methods to start a process of algorithmising, based on mental computa
tion and steered by progressive mathematising. 
Moreover the pupils do not loose sight of the global size of the numbers in
volved. The production of new forms of notations mirrors the reflection on the 
course of thought and creates the possibility to shorten the developed method. 
Regularly such approaches are met with in publications. Apart from that, the pos
sible consequences for the outline of the programme for the algorithms usually 
are not recognized, dealt with and elaborated. Anyhow Madell did not. Accord-
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ing to what has been shown with respect to this, the usual algorithm for subtrac
tion would have to leave the field (after Treffers, Feijs en De Moor, 1988). 

Example 2 
Dividing per unit and several units simultaneously in distribution situations is an 
opportunity for children learning fractions, to produce equivalencies by them
selves. In the distribution activity 1/4 and 1/4 go together with 1/2, and 1/2 can 
be decomposed (among others) into 1/4 and 1/4. During our education develop
mental research (cf. 4) pupils contrived such terms as 'hiding name' or 'conceal 
name' to indicate non-standard names for fractions. Such terms facilitated the 
communication but also described it efficiently. (The Dutch word 'schuilnaam' 
sounds less 'learned' than 'pseudonym'.) The quest for a fitting term for some 
(mathematical) phenomenon can elicit reflection, as this example shows. 
The most suitable propositions that were offered, also proved to have a long term 
predictive value (cf.Treffers & Goffree, 1985; Streefland, 1988). 

Example 3 
In more extensive situations such as 'dividing 18 pizzas among 24 children' the 
actual distribution, whether pictorial or imagined, is too laborious. In our devel
opmental research some children got to use the service at tables as a means to 
reduce the s1tRation to manageable proportions.Thinking about it they found out 
the symbol 'i%' for 24 children around a table with 18 pizzas. This made it possi
ble to represent the service at tables on paper. It led to organising and structuring 
activities such as building schemes that expressed variations in table services. 
For instance: 

that is, two tables <fi instead of one~ 

or: 

with the tables~ and~ 

This can be continued: 

3 
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At each given moment this schemes-building can be interrupted. At any table 
everybody's fair share can be determined by means of division. In this way any 
distribution situation is being made accessible to the pupils via the double action 
of fair sharing at one table and the fair table service. Time and again the learner 
will reconstruct the food/consumers relation. This leads to an operational con
cept of fraction and ratio in their mutual relation. The scheme that is developed 
organises in an almost evident way the production of tables equivalent with re
gard to fairness. The food/consumers relation of the original situation shall be 
mentally continued at each step: ratio conservation. Schematising goes on with 
table service in the background. The context situation fulfils a model function: 
the model situation of table service becomes a situation model (cf.Treffers & 
Goffree, 1985; Streefland, 1986). 

Remarks 
The quest for fitting symbols for distribution situations and schemes-building for 
table services supported by this symbol elicit reflections uncovering the process 
of horizontal mathematisation. 
Distribution situations are being located within mathematics. Anticipation is be
ing encouraged by the opportunities of progressive schematisation, which 
emerge as naturally as in the example of long division. How does this happen? 
The self-contrived symbol and the patterns in which it occurs allow to compare 
situations with each other by decomposing them in equivalent partial tables 
which can more easily be compared, for instance tables with the same number of 
guests. 
The symbol ~ is a metonym for the situation and the scheme is based on the sit
uation model of table service, which functions as a cognitive process model (cp. 
Greeno, 1976). 
Continuously applying the scheme leads to two types of shortening, which un
cover the reflection on the own activities. 
The first is scheme-conserving while the notation is simplified: equivalent 
branches, or at least the numbers are omitted so that the essentials of the table 
service are respected. The second is shortening in depth like: 

A replaced by A 
ef w cf~ ~<p 

which changes the pattern of the table service with the numbers themselves and 
their common divisors steering the shortening. 
This involves level-raising in the learning process. The provisionally highest lev
el is attained when the pupils consciously and systematically start with the reduc
tion by means of the greatest common divisor while knowing how to verbalise 
this idea. 
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Moreover this may lead the learner to focus on proportion tables: 

3 

➔~ 

~ 
~ 

Starting from a given portion 3/4 and looking for matching table services con
nects 3/4 and ~ with each other; while both of them are still distinguished by 
the difference in notation. Pushing tables side by side generates new tables grant
ing everybody the same portion: 

~ ~➔(W } thus ~➔ ~.cw.w .... 
~ cw ➔w 

The next step indeed is ratio tables. (Streefland, 1985). 

Example4 
Nineteen years old Fynn (1976) told a fascinating story on six years old poor 
Anna. She had her own way to manage big numbers. She knew that big numbers 
could be made ever bigger but she lacked words to express them. 
When she would transgress the limits of millions and billions she, in order to 
continue, invented squillions. 
Some fine day she told Fynn she could answer a squillion questions. 'Me too', 
Fynn said unimpressed, 'but, among half of them wrong'. 'Not so,' Anna said, 
'all will be good'. 'Idle nuts', Fynn thought, 'nobody can and she the least'. She 
deserves rebuke. But Anna did not take it. 
'How much is one plus one plus one?' 
'Three, of course'. 
'How much is one plus two?' 
'Three.' 
'And eight minus five?' 
'Also three.' 
Fynn wondered what she was getting at. 
'How much is eight minus six plus one?' 
'Three.' 
'How much is one hundred and three minus one hundred?' 
Fynn interrupted; he felt she was pulling his leg. She was inventing the problems 
on the spot and could go on that way until the cows came home. Nevertheless 
Anna enthusiastically made her last move. 
'How much is one half plus one half plus ........ ' 
Fynn had got the message. 
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'How many problems can be answered by three?' 
'Squillions,' Fynn said. 
'Isn't it funny, Fynn, every number is the answer to squillions of questions.' 
(paraphrasing from the Dutch version) 

Remarks 
This own production reveals high level reflection, typical for a mathematical at
titude in the spirit of Krutetskii (1976) and Freudenthal (1978). The analysis is 
left to the reader. In the next section this example will be reconsidered. 
The foregoing examples show the part played by the production of terminology, 
symbols, notations, schemes and models in the shaping of mathematisation, hor
izontal as well as vertical. 

3.4 Education developmental research for the sake of reconstructible in
struction 
Up to now the stress has been on (re)constructive learning, viewed in the learn
er's perspective. It started with informal notions and working methods. Recon
struction gradually moved the learner towards more formal mathematical no
tions, operations and structures. 
(One of the examples was concerned with unlearning wrong ideas and methods; 
notice that often too little attention is paid to the potential and need of unlearning 
in instruction (cf. Freudenthal, 1983).) 
The import of reconstructive learning is also at the heart of Anna's message. Cur
riculum developers and researchers are seldom aware of such signals. Rather 
than seriously observing children and learning from their activities, their con
structions and productions, they expect answers on questions and solutions of 
problems by prematurely theorizing within topical frameworks. Calls for change 
sounded time and again in the literature on development and research, are not lis
tened to. The results of didactical research in teaching arithmetic are badly ne
glected. Fractions is a telling example: fresh starts with all old errors repeated. 
Nothing is learned from lessons such as taught by didacticians of mathematics 
like Freudenthal (1968)(1973), Hilton (1983) or Usiskin (1979). 
A striking illustration of this fact is Brownell & Chazal (1932, p.24), who from 
the results of drill for the mastery of basic skills conclude: 

' ..... the time and accuracy scores on Test B were better than on Test A, not because 
the month's drill had materially raised the level of the pupils' performance, not be
cause drill had supplied more mature methods of thinking of the combinations, but 
because the old methods were employed with greater proficiency.' 

By 'old methods' the authors mean pupils' own informal solutions, which resist 
instruction against the grain. Wouldn't we have made greater progresses in our 
knowledge about childrens' mathematical learning if we had built on these tell
ing results of research? 
An important question now is: Does reconstructive learning also apply longitu-
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dinally to class instruction? Our reports related to the seize of The Netherlands, 
long division and table service provide indications for group learning processes. 
In order to answer in the affirmative, we have to carry on developmental re
search- which means research in action. 
It aims at developing prototypes of courses and theory-building for teaching and 
learning in a certain subject area. Instruction experiments start with provisional 
material. The teaching/learning process is closely observed. 

Continual observation and registration of individual learning processes is at the 
heart of the research. What matters is that pupils' constructions and free produc
tions are used for building and shaping the teaching course. 
In the variety of children's possible proposals (look for the kind of problems to 
be used (2)) one gets a rich choice to find out what is the best fitting, the farthest 
prospective, and in the long run the most effective. Blocking and diverting ma
terial is eliminated. 
This is no illusion. At ours as well as abroad courses have been developed in this 
way (for science, see Driver (1987); for mathematics, see Treffers (1987)). 
With the aid of children's constructions and productions even a course for frac
tions closely tied to ratio and proportion has been developed (Streefland, 1988). 
In this kind of design children, by their learning processes, decisively influence 
course development- this even extends to supposedly weak learners as some ex
amples proved. 
It nourishes the source for creating reconstructible instruction. The prototype 
can serve as a model for establishing and developing derived courses. Such po
tential instruction is predesigned in textbooks and manuals. Globally the used 
generative problems with pupils' usable long-term constructions and produc
tions, which emerged in the developmental research, will mark the learning road 
for fresh pupils' cohorts. In particular the manual will prefigure the material to 
be expected from the pupils and help to reorganise it with the view on the sequel. 
This is a means to realise teachers aided reconstructible instruction. Or, to ex
press it differently: In this way the preconditions are fulfilled to have the teachers 
treated their instruction as free production of teaching; that is teaching also 
brought forth on the base of the constructions and productions of the pupils. 
Such teaching, rather than transfer of knowledge, is negotiation of meanings 
(Driver, 1987, p.8). No longer does the course represent the teaching contents 
but: 

' ..... a programme of learning tasks, materials, and resources which enable students 
to reconstruct their models of the world to be closer to those of school' (mathematics; 
added by L.Streefland) l.c. p.8). 

3.5 Conclusion 
The construction principle in education requires a significant part played by chil
dren's constructions. What this means for mathematics education has been 
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showed earlier in the introductory chapter on realistic mathematics education 
and its theoretical framework. 
Within realistic mathematics education a solid empiric basis is laid for the prin
ciple of constructivity by having the children contribute to course development. 

Horizontal and vertical mathematisation as observed in the historical learning 
process can be a source of inspiration. In the light of history reconstructive learn
ing is realised on the individual as well as on the class level. 
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Notes 
1. Revision of Streefland (1988). 
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4 Realistic Arithmetic/Mathematics Instruction and Tests 

Marja van den Heuvel-Panhuizen 

4.1 Introduction 
According to the different ways of teaching there are different ways to find out 
what children have learned by the given instruction. In fact each didactics has its 
own means of evaluation, chosen among those that fit the given instruction the 
best. So quite often the means used in testing reflect the characteristics of the in
struction. 
For instance, in the case of realistic arithmetic/mathematics instruction - that is 
how we call it in my country - one cannot possibly limit oneself to multiple 
choice tests. Indeed, they don't do justice to the goals of this kind of instruction, 
and they fail completely as soon as the children's developments are to be tracked. 
Realistic arithmetic/mathematics instruction asks for other means of evaluation. 
Instruments that are preeminently suited for this instructional approach are ob
servations and interviews with students. 
Observations and interviews create the possibility to uncover the children's strat
egies, to have the children reflect on the strategies they applied, and - by adapt
ing the questions to what the children are doing and telling - to trace the child
ren's knowledge and abilities. Written tests don't look appropriate for realistic 
arithmetic/mathematics instruction, where this aim cannot possibly be attained 
with the usual ones. 

4.2 Drawbacks of tests 
Let me show you an example! 

1 + 6 = . 

2 + 7 = .. 

8 + 0 = , . 

6 + 2 = .. . 

3 + 5 = ... . 

4 + 4 = ... 

5 + 1 = . 

7 + 3 = . 

~ 

2 

8 - 4 = 

9 - 3 = ... 

10 - 6 = . 

5 - 5 = · .. 

7 - 6 = .... 

3 - 2 = · .. 

10 - 9 = . 

3 

7 + 2 = 

.. + 3 = 5 

4 + ... _ 6 

5 + .. = 8 

9 + 1 = 

.... + 8 = 9 

3 + 7 

.. + 4 = 9 

.... + 5 = 6 

6 + .. = 10 

4 

8 - 7 

6 - 5 = 

. .. - 4 = 3 

... - 9 = 0 

10 - .... = 9 

7 - 3 = 

3 - .... = 2 

.. - 2 = 3 

.... - 5 = 3 

9 - .... = 5 

fig. 1 
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This is one sheet of the 'Schiedam Arithmetic Test'1, used in the Netherlands. 
The children are allowed a restricted time to complete the test. Each series rep
resents a certain type of sums of increasing difficulty: numbers grow larger and 
larger and operations become more difficult. First adding up to 10, then subtract
ing under 10. Subsequently indirect additions and subtractions, then arithmetic 
up to 20, which in turn is followed by additions and subtractions up to 100. 
This kind of tests suffers from two huge drawbacks. 
1. The first drawback is that the tests reveal only the bare results and tell nothing 

about the children's strategies. This lack of information on children's strate
gies has the consequences that: 
- wrong conclusions are likely to be drawn on the children's performance; 

indeed good answers can have been got by mere chance; 
- too little information can be obtained about the progress of instruction; for 

instance, nothing is learned about he students' informal knowledge and 
solving methods; 

- and finally it is almost impossible to diagnose the children's arithmetic/ 
mathematical problems; any error analysis that solely depends on the re
sults can never suffice to discover the children's problems and miscon
ceptions. 

2. The second drawback of these tests is that they are too narrow, both with re
gard to the subject matter and the students: 
- restricted to such subject matter as can easily be tested; 
- not allowing the children to optimal show what they are able to; perhaps 

lacking abilities are balanced by others that don't get any chance. 

Yet on the other hand written tests have the big advantage that in one trial and in 
a short time a whole class can be examined as to whether certain abilities are 
mastered or not. This advantage implies that even in realistic didactics written 
tests cannot be brushed aside as long as no suitable alternatives have been 
searched for. 

4.3 Alternatives 
With regard to secondary education in the Netherlands, the awareness of the 
drawbacks of the usual written tests from the viewpoint of didactical change and 
of new curricula has meanwhile led to shaping new testing instruments. In the 
HEWET-project new test instruments have been developed at equal pace with 
the new curricula in order to do as much justice as possible to the principles of 
realistic instruction. The subject of tests is a momentous part of Jan de Lange 
Jzn 's thesis 'Mathematics, Insight and Meaning' .2 Among suitable written alter
natives for traditional tests De Lange investigated what he named 'the two-stage 
task', 'the take-home task', and the 'essay task'. Since it would take us too far 
dealing with these test instruments, I shall restrict myself to repeat the five start
ing points for developing the new testing instruments: 
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- the tests are to contribute to the learning process and to further the students' 
progress, rather than being considered as a final piece; 

- the tests are to enable the students to demonstrate their knowledge and abili
ties rather than their deficiencies (positive testing); 

- the test contents must cover the instructional goals as much as possible; they 
should not be restricted to measuring the knowledge results; processes, that 
is, the way students reached certain solutions, are more important than prod
ucts, that is, the eventual results; 

- rather than the feasibility of objective scoring, the test contents must be the 
primary quality criterion; objectivity is a secondary aim; 

- the testing instruments must be easily applicable in the classroom situation 
(cf. De Lange, 1987, p.179-181). 

4.4 MORE-project 
The previous starting-points together with the principles of which have been ex
pounded in the foregoing contributions of my colleagues, have played an impor
tant part in the search of the MORE-project3, for better instruments in primary 
education. 
The project is an investigation into the implementation and the effects of realistic 
didactics if compared with the traditional mechanistic brand. To answer the 
question of the effects, among other data, students' learning results had to be col
lected, and since their number amounted to about 400, written tests was the only 
feasible procedure. (Aside it may be mentioned that a small part of the students 
population has individually been interviewed.) The very problem of the project 
was the unavailability of tests, except for the usual written ones with the earlier 
mentioned drawbacks, consisting of bare sums. This meant that new tests had to 
be developed, which avoided these drawbacks as much as possible. In short, we 
needed tests: 
- that covered the whole spectrum of the arithmetic/mathematics area con-

cerned; 
- that gave children the opportunity to show what they are able to; 
- that provided information about abilities and strategies; 
- that could easily be handled in a classroom situation. 
I am going to illustrate these points more in detail and to explain by means of 
examples how they were made concrete in test items. Although the various items 
diverge in the measure of fulfilment of our four requirements, it has been tried to 
have each item to satisfy all of them as much as possible. The examples to be 
shown apply to grades 1 to 2. 

4.5 Easily to be handled in a classroom situation 
I take the last point first: the tests shall be easily administered in the classroom. 
This is no problem for written tests, consisting solely of bare sums. After the test 
booklets have been handed out, the children immediately know what they are ex-
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pected to do. This holds to a lesser degree as the children are given other kinds 
of problems but the well-known ones. New problems usually require some ex
planation, which makes administering in the classroom less easy. In the MORE 
research, however, we have tried to contrive tasks that can easily be given in the 
classroom situation with a minimum of explanation - anyway, no tasks requiring 
extensive oral or written instructions, which would result in a reading or listening 
comprehension rather than in an arithmetic test. Textbook-specific jargon and 
procedures had to be excluded as well. Instead we have looked for tasks, acces
sible to each child, self-explanatory tasks, requiring no additional information 
beyond that minimum of instruction that is needed to get the intention across. As 
examples take the following items. 
The first item (fig.2) is related to a game of darts being thrown at a target. The 
question asked is: 'How many points together?' Although the picture is not quite 
faithful, together with the question it is sufficient. The children immediately 
grasp the intention. The same holds for the next test item (fig.3). The question is 
simply: 'How many florins do you keep?' Each child understands that a toy train 
is being bought, and the picture shows its price and the money in the purse. 

Test4.2 (8) Test 3.4 (16) 

I 

,I 

!\ 
i :~ 

□ □ 
eJ? : .. 1181. 

fig.2 fig.3 

One more example (fig.4): 'Though you cannot see all cans, can you tell how 
many there are?' -a simple question, though not necessarily a simple task, which 
requires more than mere counting the visible cans, indeed. 
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Test 3.2 (4) 

fig. 4 

4.6 Covering the whole spectrum of the arithmetic/mathematics area con
cerned 
Though the point of covering the whole spectrum of the arithmetic/mathematics 
area has been anticipated, as it were, by the last item, it will be accounted for by 
more examples. 

Test 3.4 (21) 

7 + 6 • 

4 + 8 • 

14 + S • 

3 +12 • 

23 + 4 • 

25 + S • 

fig. 5 

Test4.2 (2) 

( 

\ 
' 

C '!-) 

''?I.,' ~;~,~·.·\. 
l . 

fig. 6 
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Test4.1 (11 Test 3.4 (20) 

.-------~-----

fig.7 fig.8 

It means that besides the usual series of sums (fig.5) other chapters of the arith
metic/mathematics area concerned have to be represented, such as the chapters: 
counting and counting sequence, ratio, geometry. An example of the first is 
shown by fig.6, where the children are asked to order waiting numbers, as are of
ten used in offices and shops, according to their magnitude, from the left to the 
right. The next item (fig. 7) has to do with ratio. The question is: "How many flor
ins for three glasses of juice?" And in the geometry item (fig.8) the children must 
find out the place where the block buildings may have stood on the grid. 

Covering the whole spectrum does not mean, however, that each chapter is tested 
separately. On the contrary, it is even more important that this happens in their 
mutual connection. As an example take the item with the fishes on the roller 
blind (fig.9). It looks a bit like the one with the cans, which was shown earlier. 
The children are asked whether they can know the number of fishes in spite of 
the obstruction of sight by the cats. Obviously this task asks for more than simple 
resultative counting. It is as well related to measuring, geometry and ratio. 

Another example of simultaneously tested abilities is the next item, on cookies 
(fig. 10). One of them costs 20 cents, and the question is the price of the others. 
Again a numerical operation, measuring, geometry and ratio play parts in this 
item. 
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Test 3.4 (2) Test 3.4 (13) 

n . I 

~ 

fig.9 fig. 10 

Besides covering all parts of the spectrum, separately as well as in connection 
with each other, it is required under this point that the testing instrument allows 
for various levels of applying mathematics in reality, which includes analysing 
the problem as well as selecting and, if need be, supplementing relevant data. 

Tasks that don't require much problem analysis as their presentation includes the 
operation to be carried out as well as all relevant data, are low level under the 
viewpoint of applying mathematics. High level means large own contributions 
of the children to the problem analysis. 

An example of low level is the item on the jogging suit (fig.11), where the price 
of the whole suit has to be calculated. Without much ado the picture and the ques
tion tell that the numbers must be added. The item (fig.12) on the birthday treat 
- a habit in my country - is quite different. The question runs: 'If there are 30 
children in my class, how many bags shall I buy?' Obviously this is a higher level 
of application. First of all, the arithmetical operation is not straightforwardly giv
en; moreover even calculations need not yield the adequate answer (such as 
'30: 9 = 3 rem 3' in the present case). Applying means more than translating pic
tures into sums. This is patently obvious in the next item (fig.13). It aims at a bike 
trip from one place to another and back. On the way out they stop at this sign 
post. The question is how many kilometres have still to be cycled from this point 
onwards totally. 
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The remaining points (children's opportunity to show what they are able to, and 
information about children's abilities and strategies) are actually the hard core of 
the search for alternatives to the traditional written tests. Though I will deal with 
both of them separately, their close connection will soon become visible. 

Test4.4 (7) Test 4.2 (19) 

3 0 kindcrcn 

,ald ... cn 

fig. 11 fig. 12 

Test4.4 (6) 

fig. 13 
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4.7 Giving children the opportunity to show what they are able to 
The opportunity given to the children to show what they are able to should be 
given both ways, that is, both poor and bright students should profit. 
Realistic didactics provides a number of useful clues, such as: 
- using stimulating and supporting contexts; 
- tasks with a number of built-in solving levels; 
- possibilities for children's own contributions, for instance, own productions 

and choice tasks. 

Stimulating contexts were offered in many of the earlier items. Besides those 
with a general stimulating effect one can offer contexts which both link up with 
informal experiences and function as supporting models. An example is the item 
(fig.14) where the knowledge of the counting sequence is tested with reference 
to house numbers (even or odd according to the sides of the street). The children 
are asked to complete the sequence. 

Test 4.1 (5) 

fig. 14 

Another example is a buying situation (fig.IS) where money functions as a 
model. Children at a level where 100- 85 is still too difficult as a sum, can solve 
it via the change - a dime and a nickel. If the same test also contains the sum as 
such (fig.16) one can make sure how far children have progressed, that is, wheth
er they still need the concrete orientation basis. 

Another kind of elastic tests is that with built-in solving levels. This has been in
tended with the next (fig.17). A pair of dice has been cast and the question runs: 
'Where shall the counter stand?' The children who don 't know yet that two and 
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four equals six, can find the solution for instance by counting the points of the 
dice. 

Test 4.4 (10) 

E] 

fig. 15 
Test 3.1 (16) 

Test 4.4 (22) 

47 - 43 =4 

33 - 25 =l 

94-29=67 

'1b 
50 - 14 = #', 

~------------~, w 
. " 

It) 

i 1 2 3 A 

fig. 17 

I 

fig. 16 

Another example of a layered test item is the one on 36 sweets which are fairly 
to be shared by three children (fig.18a). It requires a rather difficult division - dif
ficult after three months in the second grade. Yet more than half of the children 
under investigation appeared to manage it, and the next sheet (fig.18b) tells why. 
It also shows that built-in solving levels is an excellent tool to get as much infor
mation as possible about applied strategies. 
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Test4.2 (17) 

•••••• ••••••• •••••• •••••• •••••• •••••• 

□ 
fig. 18a 

Test4.2 (17) 

36 

fig. 18b 

Flexibility of design gives the children a lot of opportunities to show what they 
are able to, and the best way to realise it is creating possibilities for their own 
contributions. This can be done in various ways. 
One way to do it is administering test items with more than one correct answer, 
which yields the children a latitude to contrive solutions. An example is the item 
(fig.19a) where in order to buy 12 candles the children may choose among the 
boxes as they like it provided it comes down on 12 candles together. Again it ap
pears (fig.19b-c) that more latitude granted to the children makes the tests more 
and more informative. 

Another way to grant latitude is choice tasks where the choices are built into the 
task itself. With the next two items (fig.20a-b) the children may choose for them
selves what to buy. Besides a long sequence of degrees of difficulty, this choice 
creates indications on what the children are able to. Of course, preference for a 
certain object may have played a part, but it strikes that quite a few children make 
numerically similar choices in both items of a pair, as shown on the next sheets 
(fig.20c-d). One child chooses in both items an object that costs less than 5 flor
ins, while another decides for more than 5 florins in both cases. 
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Test 3.3 (17) 

fig. 19a 

Test 3.3 (17) Test 3.3 (17) 

fig. 19b fig. 19c 

It should be noticed that in the design of the test the number 10 had been omitted 
on the first of these test sheets (see fig.20a). 
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Test 3.2 (18) Test 3.2 (19) 
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fig. 20a fig.20b 

Test 3.2 (18) Test 3.2 (19) 
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fig. 20c fig.20d 

Though unintended this mistake created one more opportunity to uncover the 
children's procedures. 
The first child (fig.20e) adds himself the lacking 10, while the other (fig.20f) 
eventually passes to another object. 
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Test 3.2 (18) Test 3.2 (19) 
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fig.20e fig. 20f 

The best way to have children showing what they are able to, is provoking their 
own productions. An example is the item (fig.21) where the children got the task 
to divide a cake into two equal parts in four different ways. The solutions given 
by this child prove that this task is well suited to have the children showing what 
they are able to do. 
By the next item the children arc asked to invent as much sums as possible with 
a given set of numbers. Let us look to one of the results! (See fig.22a.) As you 
sec (fig.22b), at the end of the 4th grade this child even produces a sum with a 
resulting negative number. 

A simpler problem is that where only one number is given and the children are 
asked to make as many sums as possible with this number as a result. Again this 
item is of the kind that both gives children the opportunity to show their abilities 
and provides information about the children's procedures. The one works sys
tematically (fig.23a), while restricting itself to one kind of sums; the other con
trives a great many different kinds (fig. 23b ). These own productions can also re
veal problems of the children which would never have been discovered in ordi
nary written work where the final result is the only information available. Look, 
for instance, for the wrong use of the equality sign, as occurring on the next sheet 
(fig.23c)! 
Besides about the children the own productions yield information about the kind 
of instruction the children received, by reflecting it as it were. Besides this the 
own productions can excellently serve as instructional material. 
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Test 4.4 (20) 

fig.21 
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fig. 23a 

A question that certainly arises after these reactions of the children is that of the 
consequences for scoring. Indeed, this can be a problem but it need not if one 
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clearly distinguishes between two kinds of infonnation, provided by the test, 
quantitative or qualitative information. 
The quantitative information is the number of correct answers, which can be used 
as an indicator for the level of perfonnance of the subject. 

Test 4.2 (20) Test 4.2 (20) 
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fig. 23c 

This quantitative feature extends to the own productions provided a certain cri
terion has been agreed on in advance. Thus open tasks need not at all endanger 
the objectivity of the test. 
Besides quantitatively the test infonns qualitatively. This infonnation don't lend 
itself for objective scoring. Often it cannot be settled whether a strategy is right 
or wrong. But this does not matter as these data have a quite different function. 

4.8 Providing information about abilities and strategies 
It has already been stated that the criterion of yielding infonnation on abilities 
and strategies is closely connected to the preceding one. Much that contributes 
to the flexibility of the tests, provides a variety of information as well. We are 
going to repeat the resources available: 
- tasks with various built-in solving levels (remember the fair sharing of the 

sweets); 
possibilities for children's own contributions, for instance, own productions 
and choice tasks (remember the earlier shown items where even sums must 
be invented). 

Two more means may be added: 
- presenting certain data in order to look what use the students make of them; 
- stimulating reflection by the use of 'pieces of scrap paper'. 
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Test 3.4 (23) 
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Test 3.4 (22) 
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Test 3.4 (22) 

14 - 9 = I 

15 - 7 = '3 

18-3=1] 

15 - 2 = 1¼ 

26 - 4 ~fL 

27 - 7 = 1 l 

Test 3.4 (23) 
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fig. 24d 

The first is a means to purposefully look for the insights that children have ac
quired. By offering pairs of problems (fig.24a) one can diagnose the children's 
insight in the properties of the operations. This kind of items is particularly in-
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fonnative if the children's answers are being compared with those on numerical
ly similar series of bare sums. One can then observe great differences. This child 
gets correctly the sums with support problems, yet not those without support 
(fig.24b), while another succeeds just on the sums without support(fig.24c), yet 
not on those with a support added (fig.24d). 

Test4.4 (8) Test4.4 (8) 
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The large amount of information about children's strategies provided by the pre
ceding test items is even raised by the use of 'pieces of scrap paper'. You can 
see the pieces pictured on a test sheet (fig.25a). The test itself is about two chil
dren playing a game: at the end the scores of both of them are to be calculated. 
In order to do it the students may use the scrap paper. Some students leave them 
empty, others let it be known that they don't need them, but a quite a number of 
pieces show traces of the solving strategies. 

Take, for instance, this student (fig.25a). Obviously the student added the num
bers one after the other. The next (fig.25b) started the same way (10 + 2 = 
12, ... ), yet arriving at 40, he obviously noticed that the result was 90. The third 
(fig.25c) took pairs of numbers together, though with respect to the second col
umn not in the simplest way. The same holds for the fourth (fig.25d). This scrap 
of paper also shows that additions are being made from the left to the right, that 
is, first adding the tens, and after adding the units, correcting the tens. 

One more test item with scrap paper (which has been omitted for a moment) 
(fig.26a). The length of the long bridge being 48 metres, it is asked: 'How long 
is the short bridge?' The answer of this student is: '18.' But what does such an 
answer reveal, except that it is wrong? Look, however, how revealing such a sim
ple piece of scrap paper can be. 

As in the case of the own productions it is evident that pieces of scrap paper pro
vide both a rich treasure of data on the children's procedures and very useful in
structional material. 

Test 4.4 (13) Test 4.4 (13) 

411 48 
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fig. 26a fig.26b 
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4.9 A most revealing example to conclude with 

Test 3.1 (1) After this review of a variety 
of test items, which extend 
the limits of testing, I am go
ing to conclude by analysing 
one test in its totality. In
deed, after the isolated ex -
amples of items, the total 
picture of one test can even 
better prove how revealing a 
good test can be. Moreover, 
this particular example will 
show that written tests in the 
classroom environment can 
be useful even if given to 
young children. 

Relational concepts 

Test 3.1 (5) 

fig.27 

.-----------~ 
The test I am going to deal 
with was developed in order 
to find out what knowledge 
and abilities with regard to 
number children possess 
when entering grade school. 
In our country, apart from 
preparatory activities at the 
kindergarten level, system
atic arithmetic/mathematics 
instruction starts at the first 
grade (== 6 years old chil
dren). 

The test was administered 
after three weeks in the first 
grade, so the children had 
got nearly no arithmetic/ 
mathematics instruction, nor 
could they read or write, nor 
had they had any earlier 
classroom experience in do
ing written tests. For these 
very children the test had 
been developed. 
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Knowledge of symbols 

Test 3.1 (9) 
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Test 3.1 (16) 

Counting sequence 

Test 3.1 (10/11) 

00000 
00000 
00000 
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Resultative counting 

Test 3.1 (18) 

Adding within a context (countable) 

fig. 30 

I 
fig. 31 

fig.32 

The test consisted of the fol
lowing parts: 
- relational concepts; 
- knowledge of symbols; 
- the counting sequence; 

resultative counting; 
- operations: addition and 

subtraction. 

The part 'relational con
cepts' included the concepts 
'highest', 'smallest', 'thick
est', and 'most'. For in
stance, this item (fig.27) 
aims at 'highest'. The sub
jects are asked to put a cross 
at the highest building. 

'Knowledge of symbols' 
was operationalised by try
ing to make sure whether the 
children knew the numerals 
3, 5, 10, 14. For instance, the 
second item (fig.28) asks: 
'Put a cross at number 3!' 

With respect to the counting 
sequence it was tested 
whether the children knew 
which numbers followed on 
4 and 7 and which preceded 
4 and 8. To indicate the fol
lower the picture of an in
complete goose board was 
shown (fig.29), which was 
to be completed, that is, the 
subjects had to cross out the 
number that was to tum up. 
The model for finding the 
predecessor was the way 
they are counting when 
launching a rocket (fig. 30). 

For resultative counting 
(fig.31) the subjects had to 
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colour 2, 5, 7, 9 marbles, re
spectively. 

Adding and subtracting 
were tested in a context, 
rather than by formulas. 
This happened on two lev
els: tasks where the sheet 
shows sets of countable ob
jects, and tasks where the 
quantities are given by nu
merals. The first two items 
(fig.32 and 33) show the 
'countable' variant of add
ing and subtracting. For add
ing the question is 'where to 
put the counter?', for sub
tracting, 'how many bal
loons have been sold?' The 
next two items (fig.34 and 
35) show the 'non-counta
ble' variant. For adding the 
question is 'how many 
points together?', and for 
subtracting the subjects 
must indicate the number of 
florins they will keep after 
buying the goggles. 
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Test 3.1 (26) 
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The test was administered to 22 first grade classes. The population was quite het
erogeneous: rural and city schools, schools with many foreign children and 
schools with a great majority of Dutch children, schools which are using a real
istic textbook and school which are using a traditional textbook. 441 children 
took the test. In each class the teacher administered the test according to an in
struction that prescribed all details. Before summarising the results I would ask 
you to make estimates for yourself. What do you think children are able to at the 
start of grade 1, that is, at the age of six? 

In The Netherlands we posed the same question to four groups of four to five 
people working as teachers in primary education, as counsellors, or as teacher 
trainers. The figures 36 and 37 reproduce their estimates. 

They expected full mastery of the relational concepts (fig. 36). Tt.eir expecta
tions with regard to knowledge of symbols were much lower- about half of the 
children would know the numerals up to 10. With regard to the counting se
quence they were still lower - a fourth would be able to answer the questions. 
About the same would hold for counting with regard to 7 and 9 (fig. 37). The 
lowest were the expectations with regard to adding and subtracting. With 'count
able' objects they would somehow succeed, but this percentage was estimated to 
sharply decrease for the 'non-countable' variant. In particular for subtraction the 
estimates were very low. 

I don't know whether in your American situation you would agree with these es
timates, but for the Netherlands they were far off the mark. The relational con
cepts were mastered by almost all subjects (fig. 36), and the same holds for the 
knowledge of the numbers up to 10. At 'knowledge of the counting sequence' 
the great majority knew the follower. With the predecessor it is different: only 
half of the children succeeded. Resultative counting up to 10 was mastered by 
almost all children (fig. 37). At adding and subtracting within a context children 
succeeded very well with respect to adding small numbers, in particular, in the 
case of countable objects. Even tasks with number symbols were mastered by 
about half of the subjects. With subtractions the scores were lower, and here was 
no significant difference between 'countable' and 'non-countable'. 

Anyway it is evident that children at the start of the first grade possess quite a bit 
of numerical knowledge and abilities. Obviously they were grossly underesti
mated, at least by our judges. 

For us it was most revealing that this was discovered by a written test in a class
room environment. In other words, even in realistic arithmetic/mathematics in
struction, tests may have a future. 
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5 Realistic Geometry Instruction 
Koeno Gravemeijer 

5.1 Introduction 
The present contribution deals with a kind of geometry instruction which differs 
largely from the well-known deductive geometry such as taught at secondary 
levels in most countries. We are pleading for 'realistic geometry', if not as a re
placement then at least as a valuable preparation for more formal geometry. This 
sketch of realistic geometry will also be used to clarify some aspects of realistic 
instruction theory. 

5.2 Examples of realistic geometry 
Let us illustrate the idea of realistic geometry by a few examples. 

1 What do you do if you want to take a photograph of a large company and 
you see that you will not get everybody on the picture? 
...... You will step back. 

Why does the photographer, standing farther away, get more people on the pic
ture? It looks so obvious that hardly anybody would ask the question. However, 
the answer requires a geometric interpretation of the situation. The next exam
ples are to show the intriguing character of geometric problems, which are sug
gested by everyday life experience. 

2 You're travelling a long way by train. 
The train is moving through a moonlit landscape. 

C: 
l ...... ·o· . . . . 4s-J 

Whatever the speed of the train may be, 
the moon is catching up with you, or so it seems. 
>> What is the cause of this effect? 
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3 How comes a mirror interchanges right and left, 
while conserving above and below? 

4 If you are driving through a long city street, 
huge buildings in the background look like sinking down 
behind the lower ones in the foreground. 
> > What is happening? 

Or, to put the last question in another way: when, in our flat Dutch landscape, we 
approach the_ silhouette of a town at the straight horizon, the church towering 
high above its surroundings lowers, in order eventually to hide behind the other 
buildings. 

WU 
•If 
t 11 

·~ 
l ► 

• -··• 

A sideview tells what's happening. Let us take a church and a hotel in front of it. 
A spectator at point a, looking at the town, what part of the church does he see? 

a 

80 



We draw his (straight) vision line to see how it changes if he starts moving and 
how the visible part of the church gradually diminishes. So to him the church 
seems sinking behind the other building. However, is it sinking or shrinking? In 
fact, it is growing bigger as one gets closer, but the nearer building seems to grow 
faster than that at the background. Let us elaborate a bit further on this point. 
Any object, as it looks bigger it is in fact closer. This is so obvious that one does 
not even think about it. But let us investigate the cause of this effect. How big an 
object shows, depends on what we may call its vision angle(@). Its size is de
termined by the size of the object as well as by the distance between object and 
observer. The bigger the distance, the smaller the angle. So the distance deter
mines the scale at which objects are seen. 

What looks bigger is in fact closer 

Let us return to the hotel and the church tower. 
Then we may reason as follows. Far away (a) both buildings are seen at about the 
same scale. But as one gets closer (b), the difference between the scales is getting 
ever larger. 

a. vision angle:far away b. vision angle: close by 
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This relative change of scale can also be observed 
when approaching a window: the closer one gets, the wider the view. 

r,~ 
/,;~ 

' ' 1----------' 

One might say: 'Nice problems, but is it geometry, and even more, is it mathe
matics?' Let us answer the last question first, and then come back to the first. 
What mathematics means depends on what one chooses it to be: a ready made 
system or an activity. 

4.1 Mathematics and mathematics instruction 
In realistic mathematics instruction we agree with Freudenthal (1971) who sees 
mathematics as an activity, not unlike a mathematician's activity, that is, an ac
tivity of solving problems, looking for problem, and organising or mathematis
ing a subject matter. 

This can be matter of reality which has to be organised according to mathematical 
patterns if problems from reality are to be solved. It can also be a mathematical mat
ter, new or old results, of your own or others, which have to be organised according 
to new ideas, to be better understood, in a broader context, or by an axiomatic ap

proach. 
A great part of mathematical activity today is orgm1ising. We like to offer the results 
of our mathematical activity in a well organised form where no traces betray the ac
tivity by which they were created. (Freudenthal 1971; 413 - 414.) 

Freudenthal fights the way to teach mathematics by implementing the results of 
the mathematical activities. Whereas in history mathematics started with real life 
problems to evolve more general and more formal ideas, instruction starts with 
the formal system, in order to present applications afterwards. He calls this an 
anti-didactical inversion. It deprives the students of the opportunity to experience 
mathematics as a mathematical activity. 
To challenge this educational tradition one would start with real life problems 
and stimulate mathematising as the main learning principle. Mathematising may 
enable students to reinvent mathematics, rather than to absorb preconstructed 
mathematics. With a reference to the history of mathematics, Freudenthal sup
ports this reinvention principle as a source of inspiration for curriculum design
ers. 
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Next to mathematising Freudenthal mentions 'looking for problems' as a math
ematical attitude. Realistic geometry is a marvellous field to develop and practise 
this reflective attitude. Reflecting on practice has played a key role in the devel
opment of geometry. Geometry started with solving practical problems. Geom
etry was wisdom about a craft before people started studying it, out of curiosity 
rather than on behalf of profitable applications, though afterwards results of this 
activity proved applicable as well. Egyptians are told to have used the (3, 4, 5) 
triangle to construct right angles1• By the Greek tradition Pythagoras was credit
ed with having raised geometry to the level of a liberal art, that is, an art exercised 
by free citizens rather than by craftsmen. His disciples' work led, among others, 
to trigonometry, useful in surveying, navigation and astronomy. 
This is only one example of processes where solutions of theoretical problems, 
dating from an earlier period, became practical tools later on. Informal experien
tial knowledge one once started with, became a matter of reflection to create 
higher level knowledge. So if we take the point of view of mathematics as an ac
tivity we may reach to the conclusion that reflecting on practical geometric prob
lems is mathematics, which leaves us with the first question: 'Is it geometry?'. 
To answer it let us look at Van Hiele's analysis of geometry instruction. 

4.2 Van Hieles level-theory 
Geometry instruction as understood by Van Hiele (1973, 1985) largely diverges 
from the tradition. Although he studied instructional problems at a time when de
ductive geometry still belonged to the core curriculum of Dutch secondary in
struction, his analysis of the didactical problems arising with this kind of geom
etry instruction is still useful to show us the importance of less formal introduc
tions. 
Van Hiele states a communication gap between teacher and student, which he il
lustrates by means of their interpretations of the geometrical concept 'rhomb'. 
'This figure is a rhomb', he says, may mean quite different things to teachers and 
students. 

□ ◊ 
square square seen as a rhomb 

The student might recognise the shape and associate it with the name 'rhomb'. 
For students who recognise a rhomb this way it may be a hard thing to see a 
square as a rhomb, unless this square is placed in another position. To a mathe
matician, as well as to a mathematics teacher, the label 'rhomb' has quite another 
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meaning. It is a rather large collection of properties and relations such as: 
- it is a polygon; 
- all sides are equally long; 
- it is a parallelogram; 
- opposite sides are parallel; 
- the diagonals are perpendicular, and so on. 

Because of such properties the teacher will range a square among the rhombs. 
Yet even a rough sketch of a figure suggesting equal and parallel sides will be 
accepted as a rhomb. Teacher and student differ with regard to their referential 
framework. These conceptual differences block the communication. The same 
words do not have the same meaning for both of them. So different referential 
frameworks effect different conceptual levels, and the only way to tackle the 
problem is to have the needed referential framework constructed at the lowest 
conceptual level. 
As a matter of fact Van Hiele distinguishes three conceptual levels in the process 
of learning geometry. At the teacher's conceptual level words like 'rhomb', 
side', 'angle', 'square', etc. establish junctions in a framework where each of 
them is constituted by a bunch of properties. This is what Van Hiele calls the sec
ond level. Yet there is no framework like this at the first, or ground level, where 
the labels are still connected to concrete experiences and perceptual objects. 
On the third level, however, the relations themselves become object of thinking: 
properties of relations and the connections between properties are settled, which 
makes it possible to construct a logical system. 
According to this description, former Dutch deductive geometry in secondary 
education can be said to have started at the third level, rather than at the first, with 
concrete problems and concrete activities. To be sure, what's concrete depends 
on the students' factual knowledge. In other words, the three levels should not be 
absolutised since each subject allows for its own three levels. Even though con
cepts like point, line and angle may be concrete to secondary school students, 
knowledge about them may be third or second level as soon as, rather than tradi
tional geometry, the subject matter in question is orientation in space. 

4.3 Realistic instruction theory 
Nevertheless the Van Hiele levels can help establishing the macro-structure of a 
course. To this end let us rephrase the level description as did Treffers (1987) 
who distinguished the intuitive phenomenological level, the locally descriptive 
one, and the level of subject matter systematics. Next to this macro-structure a 
micro-didactical structure is needed. It originates from Freudenthal's (1983) di
dactical phenomenology and the reinvention principle2, and it is defined by the 
relation between reflection and transition to higher micro-levels, where, as said 
above, the solutions to the problems of an earlier period become tools at a later 
one. The driving force is a reflective attitude, which may be developed by real-
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istic geometry instruction. We may exploit the intriguing force of geometry to 
stimulate this aspect of mathematical attitude. Realistic geometry gives us a 
splendid opportunity to develop it thanks to the vast amount of informal geomet
rical knowledge within young children's grasp. An impression of this kind of ge
ometry instruction may be mediated by sketching a few activities proposed in a 
realistic textbook series for primary school (Gravemeijer; 1983). 
First, it starts with exploring what looks like taking pictures: children are 
equipped with frames of matchboxes which function as cameras. A student gets 
the task to take a picture of the teacher that shows her completely. By experi
menting he will find out that it counts how the camera is hold, 

this way or that way 

and especially, whether you stand close by or farther away. 
Next time a birds eye view of a village is presented, together with some pictures 
of the same spot. At each picture the students will have to answer the same ques
tion: 

Where stood the photographer? 
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A mock up of the situation is available to the children who tackle this problem, 
so they can check their ideas, or use the mock up to try and find out. When re
constructing the viewpoint of the photographer, the students may implicitly re
construct his vision lines. 

Later on we may introduce this kind of lines more explicitly with problems like 
the following: 

f 
~ 
)\ 

~=-:tl """-- 3:::-Jo-
Uncle Bill Marc 

Can Uncle Bill see Marc? 

Onno (7 years old), confronted with this problem, reasoned 'No, he can't, since 
he cannot look this way', and drew a curved line. 
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'Neither can he look through the wall', he added and drew a line to represent a 
lightbeam reflected by the wall. 
Another task might be the following: 

Draw the shadow of the second rod. 

Shadows can be compared by drawing parallel lines, but one can also reason that 
in the sunlight twice as small a rod gives twice as small a shadow. The combina
tion of these two insights is an intuitive base for understanding invariable ratios 
in similar triangles. 
With other light sources things can be different, as experienced in a comic by Big 
Bear Bommel and Tom Cat. 

The dwarf Barribal uses shadows to look bigger than he is. 
Explain how it is being done. 

HeerBommel 

Though Bommel is bigger than Tom Cat; their shadows don't behave ac
cordingly. 
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A sideview may be used to explain the size of the shadows. 

T B 

Over some period, the shadow-model will evolve into the more sophisticated tri
angle model, where no references to shadows and so on are needed to know 
about the fixed relation between the shape of a right triangle and the ratio of its 
sides. 
This can be elaborated in all kind of problems. For instance: 
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The coast of Soldaria stretches exactly north-south. 
In the north is the harbour Urtak, and a bit south of it the harbour Romsk. 
One day the coast guard of Urtak notices an emergency signal west-south
west. 
FromRomsk the same signal is seen right in front of the coast, that is, west. 
Make a drawing of the situation (a map). 
The distance Urtak-Romsk is 3 km. How far off the coast is the ship? 



One doesn't need trigonometry to solve this problem. Just draw what you know, 
and find out the distance by measurement and ratio. 

Oertak 

Romsk 

This rough sketch may give some idea of a possible learning sequence on a topic 
in realistic geometry. It intertwines a few learning strands: getting familiar with 
the model of the right triangle, visualising geometric problems, and viewing sit
uations from different angles. 

4.4 Conclusion 
A realistic geometry programme for the primary school may stand as an example 
for realistic mathematics instruction, which in turn fits into the theoretic frame
work of Van Hie le levels as a global macro-structure, Freudenthal' s view on re
invention for micro-structures, and didactical phenomenology as an indication of 
how reality can be used to start learning processes. Treffers (1987) a posteriori 
formulated this theoretical framework of realistic mathematics instruction and 
analysed the main characteristics of educational programmes and textbook series 
developed according to this approach (see also Streefland; 1990a). These char
acteristics will be illustrated once more by the geometric problems presented 
above. 

4.4.1 The dominating place occupied by context problems, both serving as 
source and as field of application of mathematical concepts. 
We may refer to the context problems on orientation and shadow which preluded 
on the idea of fixed ratios in similar triangles. 

4.4.2 Broad attention paid to (the development of) situation models, schemas and 
symbolising. 
The shadow model proved to be a useful bridge between intuitive notions on 
shadows and mathematical relations between the shape of a right triangle and the 
ratio of sidelengths. 

4.4.3 Large contributions to the course by the children's own productions and 
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constructions, which lead them from informal to formal methods. 
The constructions appeared in solving procedures such as Onno' s reasoning. We 
also indicated different level of solving procedures. As regards free productions, 
we refer to examples by Streefland (1990b) and Van den Heuvel (1990). 

4.4.4 The interactive character of the learning process. 
Interactivity will be exemplified by the cooperation between two 11 years old 
girls who were working on the Oertak problem. They drew a map of the two har
bours and the direction of the ship, and started measuring. But then one of them 
expressed her doubts on this method. Would the arbitrary choice of a distance for 
the two towns on the map affect the result? After a short discussion they realised 
that it would not; because of the similarity of all possible triangles one might 
draw, the answer would always be the same - an important learning result which 
without this interaction would hardly have been made explicit. 

4.4.5 The intertwining with extern learning strands. 
This intertwining becomes obvious as soon as the knowledge about angles, tri
angles and ratio is used in graphs and in calculus. 
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Notes. 
1. It is a fairy tale, the oldest source of which dates just a century back; though the Egyp

tians knew and applied a lot of practical geometry, there is not any indication that they 
knew at least this special case of the so-called Pythagorean theorem. (Freudenthal, 
1986). 

2. See Gravemeijer (1990). 
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