Een mexicaan op de fiets
Tijdschrift voor reken-wiskundeonderwijs, uitgegeven door het Freudenthal Instituut, Universiteit Utrecht in de periode 1981-2013 De Nieuwe Wiskrant berichtte vooral over nieuwe ontwikkelingen op het gebied van wiskundeonderwijs in het voortgezet onderwijs, zoals de vernieuwde tweede fase, ict in het onderwijs, de nieuwe plannen voor vmbo, zelfstandig leren, toetsen en examens, de A-lympiade, de Nationale Wiskunde Dagen, e.d. |
Kindt, M.
Nieuwe Wiskrant. Tijdschrift voor Nederlands Wiskundeonderwijs In the fifties geometry in the upper grades of secondary education consisted of solid geometry, descriptive geometry and analytic geometry. The curriculum change of 1968 replaced these subjects with so-called vector geometry, which in the course of the years more and more tended to become linear algebra. Within the frame of a future curriculum reform the working group HE WET has recommended restoring solid geometry as a preparation on technical and scientific studies. This new subject should comprise parts of the three abused old geometry subjects. Projections such as known as front views, side views, and ground plans of spatial objects would be a starting point. Interpreting a drawn projection asks for spatial intuition. A nice historical example is Galileo’s and his contemporaries’ wrong interpretation of the image of Saturn. Christian Huygens is very likely to have been the first who successfully combined the various images (orthogonal projections) into a correct spatial image. Another projection method, which became a fashion in art, is perspective. An extremely simple way to draw a cube in perspective while using orthogonal projections, was invented on the 5th century by the Italian Alberti. The same method can be used to construct parallel projective images as were given in textbooks on solid geometry. Comparing the central and parallel projections is an appropriate starting point for deductive reasoning. From the most elementary property common to central and parallel projection, namely invariance of rectilinearity, a straight way leads to well-known incidence axioms and theorems, which are instrumental on constructions related to spatial figures. |
U moet ingelogd zijn om een reactie te kunnen plaatsen.